참고문헌
- Nicolai, B.M., Egea, J.A., Scheerlinck, N., Banga, J.R. and Datta, A.K. (2011), "Fuzzy finite element analysis of heat conduction problems with uncertain parameters", J. Food Eng., 103(1),38-46. https://doi.org/10.1016/j.jfoodeng.2010.09.017
- Bondarev, V.A. (1997), "Variational method for solving non-linear problems of unsteady-state heat conduction", Int. J. Heat Mass Tran., 40(14), 3487-3495. https://doi.org/10.1016/S0017-9310(96)00143-3
- Carlslaw, H.S. and Jaeger, J.C. (1986), Conduction of Heat in Solids, 2nd Ed., Oxford University Press, USA.
- Caro-Corrales, J., Cronin, K., Abodayeh, K., Gutierrez-Lopez, G. and Ordorica-Falomir, C. (2002), "Analysis of random variability in biscuit cooling", J. Food Eng., 54(2), 147-156. https://doi.org/10.1016/S0260-8774(01)00202-3
- Demir, A.D., Baucour, P., Cronin, K. and Abodayeh, K. (2003), "Analysis of temperature variability during the thermal processing of hazelnuts", Innov. Food Sci. Emerg. Technol., 4(1), 69-84. https://doi.org/10.1016/S1466-8564(02)00084-X
- Dong, W. and Shah, H. (1987), "Vertex method for computing functions of fuzzy variables", Fuzzy Set. Syst., 24(1), 65-78. https://doi.org/10.1016/0165-0114(87)90114-X
- Deng, Z.S. and Liu, J. (2002), "Monte Carlo method to solve multidimensional bioheat transfer problem", Numer. Heat Tr. B. Fund., 42(6), 543-567. https://doi.org/10.1080/10407790260444813
- Dong, W.M. and Wong F.S. (1987)," Fuzzy weighted average and implementation of the extension principle", Fuzzy Set Syst., 21(2), 183-199. https://doi.org/10.1016/0165-0114(87)90163-1
- Wilson, E.L. and Nickell, R.E. (1966), "Application of the finite element method to heat fonduction analysis", Nuclear Eng. Design, 4, 276-286, North-Holland Publishing Comp., Amsterdam. https://doi.org/10.1016/0029-5493(66)90051-3
- Onate, E., Zarate, F. and Idelsohn, S.R. (2006), "Finite element formulation for convective-diffusive problems with sharp gradients using finite calculus", Comput. Method. Appl. M., 195(13-16), 1793-1825. https://doi.org/10.1016/j.cma.2005.05.036
- Halder, A., Datta, A.K. and Geedipalli, S.S.R. (2007), "Uncertainty in thermal process calculations due to variability in firstorder and Weibull parameters", J. Food Sci., 72(4), 155-167. https://doi.org/10.1111/j.1750-3841.2007.00329.x
- Hanss, M. (2002), "The transformation method for the simulation and analysis of systems with uncertain parameters", Fuzzy Set. Syst., 130(3), 277-289. https://doi.org/10.1016/S0165-0114(02)00045-3
- Iijima, K. (2004), "Numerical solution of backward heat conduction problems by a high order lattice-free finite difference method", J. Chinese Inst. Eng., 27(4), 611-620. https://doi.org/10.1080/02533839.2004.9670908
- Klir, G.J. (1997), "Fuzzy arithmetic with requisite constraints", Fuzzy Set. Syst., 91(2),165-175. https://doi.org/10.1016/S0165-0114(97)00138-3
- Kulpa, Z., Pownuk, A. and Skalna, I. (1998), "Analysis of linear mechanical structures with uncertainties by means of interval methods", Comput. Mech. Eng. Sci., 5, 443-477.
- Laguerre, O. and Flick, D. (2010), "Temperature prediction in domestic refrigerators: deterministic and stochastic approaches", Int. J. Refrig., 33(1), 41-51. https://doi.org/10.1016/j.ijrefrig.2009.09.014
- Ling X., Keanini R.G. and Cherukuri, H.P. (2003), "A non-iterative finite element method for inverse heat conduction problems", Int. J. Numer. Meth.Eng., 56(9),1315-1334. https://doi.org/10.1002/nme.614
- Liu, J.Y., Minkowycz, W.J. and Cheng, P. (1986), "Conjugated, mixed convection-conduction heat transfer along a cylindrical fin in a porous medium", Int. J. Heat Mass Tran., 29(5),769-775. https://doi.org/10.1016/0017-9310(86)90128-6
- Liu, K.C. and Cheng, P.J. (2006), "Numerical analysis for dual-phase-lag heat conduction in layered films", Numer. Heat Tr. A. Appl., 49(6), 589-606. https://doi.org/10.1080/10407780500436865
- Igboekwe, M.U. and Achi, N.J. (2011), "Finite difference method of modelling groundwater flow", J. Water Res. Protection, 3, 192-198. https://doi.org/10.4236/jwarp.2011.33025
- Matinfar, M., Nasseri, S.H. and Sohrabi, M. (2008), "Solving fuzzy linear system of equations by using householder decomposition method ", Appl. Math. Sci., 2(52), 2569 -2575.
- Monte, F. de (2000), "Transient heat conduction in one-dimensional composite slab. A 'natural' analytic approach", Int. J. Heat Mass Tran., 43(19), 3607-3619. https://doi.org/10.1016/S0017-9310(00)00008-9
- Muhanna, R.L. and Mullen, R.L. (2001), "Uncertainty in mechanics problems - interval - based approach", J. Eng. Mech. - ASCE, 127(6), 557-556. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)
- Muhieddine, M., Canot, E. and March, R. (2009), "Various approaches for solving problems in heat conduction with phase change", IJFV Int. J. On Finite, 6(1).
- Neumaier, A. (1990), Interval methods for systems of equations, Cambridge University Press, New York.
- Nicolai, B.M. and De Baerdemaeker, J. (1993), "Computation of heat conduction in materials with random variable thermo physical properties", Int. J. Numer. Meth. Eng., 36(3), 523-536. https://doi.org/10.1002/nme.1620360310
- Nicolai, B.M., Scheerlinck, N., Verboven, P. and De Baerdemaeker, J. (2000), "Stochastic perturbation analysis of thermal food processes with random eld parameters", Trans. ASAE, 43,131-138. https://doi.org/10.13031/2013.2676
- Nicolai, B.M., Verboven, P., Scheerlinck, N. and De Baerdemaeker, J. (1999), "Numerical analysis of the propagation of random parameter uctuations in time and space during thermal food processes", J. Food Eng., 38(3), 259-278.
- Nicolai, B.M., Verlinden, B., Beuselinck, A., Jancsok, P., Quenon, V., Scheerlinck, N.,Verboven, P. and De Baerdemaeker, J. (1999), "Propagation of stochastic temperature uctuations in refrigerated fruits", Int. J. Refrig., 22(2), 81-90. https://doi.org/10.1016/S0140-7007(98)00051-6
- Panahi, A., Allahviranloo, T. and Rouhparvar, H. (2008), "Solving fuzzy linear systems of equations", ROMAI J., 4(1), 207-214.
- Peterson, R.B. (1999), "Numerical modeling of conduction effects in microscale counterflow heat exchangers", Microscale Therm. Eng., 3(1),17-30. https://doi.org/10.1080/108939599199846
- Senthilkumar, P. and Rajendran, G. (2011), "New approach to solve symmetric fully fuzzy linear systems", Sadhana, 36(6), 933-940. https://doi.org/10.1007/s12046-011-0059-8
- Varga, S., Oliveira, J. and Oliveira, F. (2000), "Influence of the variability of processing factors on the F-value distribution in batch retorts", J. Food Eng., 44(3), 155-161. https://doi.org/10.1016/S0260-8774(99)00174-0
- Vijayalakshmi, V. and Sattanathan, R. (2011), "ST decomposition method for solving fully fuzzy linear systems using gauss jordan for trapezoidal fuzzy matrices", Forum Math., 6(45), 2245- 2254.
- Wang, J., Wolfe, R.R. and Hayakawa, K. (1991), "Thermal process lethality variability in conduction heated foods", J. Food Sci., 56(5), 1424-1428. https://doi.org/10.1111/j.1365-2621.1991.tb04789.x
- Yang, H.Q., Yao, H. and Jones, J.D. (1993), "Calculating functions on fuzzy numbers", Fuzzy Set. Syst., 55(3), 273-283. https://doi.org/10.1016/0165-0114(93)90253-E
- Zadeh, L.A. (1965), "Fuzzy Sets, information and control", 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
피인용 문헌
- Non probabilistic solution of uncertain neutron diffusion equation for imprecisely defined homogeneous bare reactor vol.62, 2013, https://doi.org/10.1016/j.anucene.2013.06.009
- Numerical solution of uncertain neutron diffusion equation for imprecisely defined homogeneous triangular bare reactor vol.40, pp.7, 2015, https://doi.org/10.1007/s12046-015-0433-z
- Granular approximation of solutions of partial differential equations with fuzzy parameter vol.3, pp.1, 2018, https://doi.org/10.1007/s41066-017-0053-6
- Approximate solution of fuzzy quadratic Riccati differential equations vol.2, pp.3, 2013, https://doi.org/10.12989/csm.2013.2.3.255
- Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate vol.67, 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.036
- Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2012, https://doi.org/10.12989/csm.2019.8.6.523
- Natural convection of nanofluid flow between two vertical flat plates with imprecise parameter vol.9, pp.3, 2012, https://doi.org/10.12989/csm.2020.9.3.219