Acknowledgement
Grant : Modelling and Analysis of Nanostructures: Carbon Nanotubes and Nanocomposites
References
- Agrawal, P.M., Sudalayandi, B.S., Raff, L.M. and Komanduri, R. (2006), "A comparison of different methods of Young's modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations", Comput. Mater. Sci., 38(2), 271-281. https://doi.org/10.1016/j.commatsci.2006.02.011
- Cooper, C.A. and Young, R.J. (2000), "Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy", Proceedings of the SPIE - Optical Devices and Diagnostics in Materials Science, 4098.
- CUFSM (2006), Elastic buckling analysis of thin-walled members by finite strip analysis, CUFSM v3.12. Available from http://www.ce.jhu.edu/bschafer
- Desai, A.V. and Haque, M.A. (2005), "Mechanics of the interface for carbon nanotube-polymer composites", Thin Wall.Struct., 43(11), 1787-1803. https://doi.org/10.1016/j.tws.2005.07.003
- Faria, B., Silvestre, N. and Canongia Lopes, J.N. (2011), "Interaction diagrams for carbon nanotubes under combined shortening-twisting", Compos.Sci. Technol., 71(16), 1811-1818. https://doi.org/10.1016/j.compscitech.2011.08.006
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Huang, Y., Wu, J. and Hwang, K.C. (2006), "Thickness of graphene and single-wall carbon nanotubes", Phys. Rev. B., 74(24), 245413-9. https://doi.org/10.1103/PhysRevB.74.245413
- Kitipornchai, S., He, X.Q. and Liew, K.M. (2005), "Buckling analysis of triple-walled carbon nanotubes embedded in an elastic matrix", J. Appl. Phys., 97(11), 114318. https://doi.org/10.1063/1.1925334
- Leung, A.Y.T., Wu, Y.D. and Zhong, W.F. (2006), "Computation of Young's moduli for chiral single-walled carbon nanotubes", Appl. Phys.Lett., 88, 251908. https://doi.org/10.1063/1.2201637
- Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
- Qian, D., Dickey, E., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
- Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8-10), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
- Silvestre, N., Faria, B. and Canongia Lopes, J.N. (2012), "A Molecular dynamics study on the thickness and postcritical strength of carbon nanotubes", Compos. Struct., 94(4), 1352-1358. https://doi.org/10.1016/j.compstruct.2011.10.029
- Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polymer, 47(5), 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
- Stuart, S., Tutein, A.B. and Harrison, J.A. (2000), "A reactive potential for hydrocarbons with intermolecular interactions", J. Chem.Phys., 112, 6472-6486. https://doi.org/10.1063/1.481208
- Talukdar, K. and Mitra, A.K. (2010), "Influence of odd and even number of stone-wales defects on the fracture behaviour of an armchair single-walled carbon nanotube under axial and torsional strain", Molecular Simulation, 36(6), 409-417. https://doi.org/10.1080/08927020903530971
- Tserpes, K.I., Papanikos, P., Labeas, G. and Pantelakis, Sp.G. (2008), "Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites", Theor. Appl. Fract. Mec., 49(1), 51-60. https://doi.org/10.1016/j.tafmec.2007.10.004
- Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res.Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011
- Wang, B.L., Hoffman, M. and Yu, A.B. (2012), "Buckling analysis of embedded nanotubes using gradient continuum theory", Mech. Mater., 45, 52-60. https://doi.org/10.1016/j.mechmat.2011.10.003
- Wang, Q., Liew, K.M. and Duan, W.H. (2008), "Modeling of the mechanical instability of carbon nanotubes", Carbon, 46(2), 285-290. https://doi.org/10.1016/j.carbon.2007.11.022
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
Cited by
- Buckling analysis of structures under combined loading with acceleration forces vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.1051
- Radial deformation and band-gap modulation of pressurized carbon nanotubes vol.2, pp.2, 2013, https://doi.org/10.12989/csm.2013.2.2.147
- Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics vol.90, 2014, https://doi.org/10.1016/j.compscitech.2013.09.027