References
- Amabili, M. (2010), "Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass", J. Sound Vib., 329(21), 4501-4514. https://doi.org/10.1016/j.jsv.2010.04.024
- Amabili, M. and Carra, S. (2012), "Experiments and simulations for large-amplitude vibrations of rectangular plates carrying concentrated masses", J. Sound Vib., 331(1), 155-166. https://doi.org/10.1016/j.jsv.2011.08.008
- Amabili, M., Pellegrini, M., Righi, F. and Vinci, F. (2006), "Effect of concentrated masses with rotary inertia on vibrations of rectangular plates", J. Sound Vib., 295(1-2), 1-12. https://doi.org/10.1016/j.jsv.2005.11.035
- Burak Özhan, B. and Pakdemirli, M. (2010), "A general solution procedure for the forced vibrations of a system with cubic nonlinearities: Three-to-one internal resonances with external excitation", J. Sound Vib., 329(13), 2603-2615. https://doi.org/10.1016/j.jsv.2010.01.010
- Chen, L.Q. (2005), "Analysis and control of transverse vibrations of axially moving strings", Appl. Mech. Rev., 58(2), 91-116. https://doi.org/10.1115/1.1849169
- Chen, L.Q. and Chen, H. (2010), "Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model", J. Eng. Math., 67(3), 205-218. https://doi.org/10.1007/s10665-009-9316-9
- Chen, L.Q. and Ding, H. (2010), "Steady-State transverse response in coupled planar vibration of axially moving viscoelastic beams", J. Vib. Acoust., 132(1), 011009. https://doi.org/10.1115/1.4000468
- Darabi, M.A., Kazemirad, S. and Ghayesh, M.H. (2012), "Free vibrations of beam-mass-spring systems: analytical analysis with numerical confirmation", Acta Mech. Sinica, 28 (2), 468-481. https://doi.org/10.1007/s10409-012-0010-1
- Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and Wang, X. (1998), AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Concordia University, Montreal, Canada.
- Ghayesh, M.H. (2011), "On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: Parametric study", Acta Mech. Solida Sin., 24(4), 373-382. https://doi.org/10.1016/S0894-9166(11)60038-4
- Ghayesh, M.H. (2008), "Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide", J. Sound Vib., 314(3-5), 757-774. https://doi.org/10.1016/j.jsv.2008.01.030
- Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Mach. Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004
- Ghayesh, M.H. (2010), "Parametric vibrations and stability of an axially accelerating string guided by a nonlinear elastic foundation", Int. J. Nonlinear Mech., 45(4), 382-394. https://doi.org/10.1016/j.ijnonlinmec.2009.12.011
- Ghayesh, M.H. (2011a), "Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance", Int. J. Mech. Sci., 53(11), 1022-1037. https://doi.org/10.1016/j.ijmecsci.2011.08.010
- Ghayesh, M.H. (2011b), "On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study", Acta Mech. Solida Sin., 24(4), 373-382. https://doi.org/10.1016/S0894-9166(11)60038-4
- Ghayesh, M.H. (2011c), "Parametrically excited viscoelastic beam-spring systems: Nonlinear dynamics and stability", Struct. Eng. Mech., 40(5), 705-718. https://doi.org/10.12989/sem.2011.40.5.705
- Ghayesh, M.H. (2012a), "Coupled longitudinal-transverse dynamics of an axially accelerating beam", J. Sound Vib., 331(23), 5107-5124. https://doi.org/10.1016/j.jsv.2012.06.018
- Ghayesh, M.H. (2012b), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal. Real., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009
- Ghayesh, M.H. (2012c), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlinear Dynam., 69(1-2), 193-210. https://doi.org/10.1007/s11071-011-0257-2
- Ghayesh, M.H. (2012d), "Subharmonic dynamics of an axially accelerating beam", Arch. Appl. Mech., in press.
- Ghayesh, M.H., Alijani, F. and Darabi, M.A. (2011), "An analytical solution for nonlinear dynamics of a viscoelastic beam-heavy mass system", J. Mech. Sci. Technol., 25(8), 1915-1923. https://doi.org/10.1007/s12206-011-0519-4
- Ghayesh, M.H. and Amabili, M. (2012), "Steady-state transverse response of an axially moving beam with time dependent axial speed", Int. J. Nonlinear Mech., (in press).
- Ghayesh, M.H., Amabili, M. and Païdoussis, M.P. (2012), "Nonlinear vibrations and stability of an axially moving beam with an intermediate spring-support: two-dimensional analysis", Nonlinear Dynam., in press.
- Ghayesh, M.H. and Balar, S. (2010), "Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams", Appl. Math. Model., 34(10), 2850-2859. https://doi.org/10.1016/j.apm.2009.12.019
- Ghayesh, M.H., Kafiabad, H.A. and Reid, T. (2012), "Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam", Int. J. Solids Struct., 49(1), 227-243. https://doi.org/10.1016/j.ijsolstr.2011.10.007
- Ghayesh, M.H., Kazemirad, S. and Amabili, M. (2012), "Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance", Mech. Mach. Theory, 52, 18-34. https://doi.org/10.1016/j.mechmachtheory.2012.01.008
- Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330(22), 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
- Ghayesh, M.H., Kazemirad, S., Darabi, M.A. and Woo, P. (2012), "Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system", Arch. Appl. Mech., 82(3), 317-331. https://doi.org/10.1007/s00419-011-0558-4
- Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Model., 36, 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084
- Ghayesh, M.H. and Khadem, S.E. (2007), "Non-linear vibration and stability analysis of a partially supported conveyor belt by a distributed viscoelastic foundation", Struct. Eng. Mech., 27(1), 17-32. https://doi.org/10.12989/sem.2007.27.1.017
- Ghayesh, M.H. and Moradian, N. (2011), "Nonlinear dynamic response of axially moving, stretched viscoelastic strings", Arch. Appl. Mech., 81(6), 781-799. https://doi.org/10.1007/s00419-010-0446-3
- Ghayesh, M.H., Païdoussis, M.P. and Amabili, M. (2012), "Subcritical parametric response of an axially accelerating beam", Thin Wall. Struct., 60, 185-193. https://doi.org/10.1016/j.tws.2012.06.012
- Ghayesh, M.H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088
- Holmes, P.J. (1978), "Pipes supported at both ends cannot flutter", J. Appl. Mech., 45(3), 619-622. https://doi.org/10.1115/1.3424371
- Huang, J.L., Su, R.K.L., Li, W.H. and Chen, S.H. (2011), "Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances", J. Sound Vib., 330(3), 471-485. https://doi.org/10.1016/j.jsv.2010.04.037
- Kazemirad, S., Ghayesh, M.H. and Amabili, M. (2012), "Thermo-mechanical nonlinear dynamics of a buckled axially moving beam", Arch. Appl. Mech., in press.
- Marynowski, K. and Kapitaniak, T. (2002), "Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web", Int. J. Nonlinear Mech., 37(7), 1147-1161. https://doi.org/10.1016/S0020-7462(01)00142-1
- Marynowski, K. and Kapitaniak, T. (2007), "Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension", Int. J. Nonlinear Mech., 42(1), 118-131. https://doi.org/10.1016/j.ijnonlinmec.2006.09.006
- Naguleswaran, S. and Williams, C.J.H. (1968), "Lateral vibration of band-saw blades, pulley belts and the like", Int. J. Mech. Sci., 10(4), 239-250. https://doi.org/10.1016/0020-7403(68)90009-X
- Nguyen, Q.C. and Hong, K.S. (2011), "Stabilization of an axially moving web via regulation of axial velocity", J. Sound Vib., 330(20), 4676-4688. https://doi.org/10.1016/j.jsv.2011.04.029
- Oz, H.R., Pakdemirli, M. and Boyaci, H. (2001), "Non-linear vibrations and stability of an axially moving beam with time-dependent velocity", Int. J. Nonlinear Mech., 36(1), 107-115. https://doi.org/10.1016/S0020-7462(99)00090-6
- Pakdemirli, M. and BoyacI, H. (2003), "Non-linear vibrations of a simple-simple beam with a non-ideal support in between", J. Sound Vib., 268(2), 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Pakdemirli, M. and Ozkaya, E. (1998), "Approximate boundary layer solution of a moving beam problem", Math. Comput. Appl., 3, 93-100.
- Pakdemirli, M. and Ulsoy, A.G. (1997), "Stability analysis of an axially accelerating string", J. Sound Vib., 203(5), 815-832. https://doi.org/10.1006/jsvi.1996.0935
- Pakdemirli, M., Ulsoy, A.G. and Ceranoglu, A. (1994), "Transverse vibration of an axially accelerating string", J. Sound Vib., 169(2), 179-196. https://doi.org/10.1006/jsvi.1994.1012
- Pellicano, F. and Vestroni, F. (2002), "Complex dynamics of high-speed axially moving systems", J. Sound Vib., 258(1), 31-44. https://doi.org/10.1006/jsvi.2002.5070
- Shih, L.Y. (1971), "Three-dimensional non-linear vibration of a traveling string", Int. J. Nonlinear. Mech., 6(4), 427-434. https://doi.org/10.1016/0020-7462(71)90041-2
- Simpson, A. (1973), "Transverse modes and frequencies of beams translating between fixed end supports", J. Mech. Eng. Sci,, 15, 159-164. https://doi.org/10.1243/JMES_JOUR_1973_015_031_02
- Stylianou, M. and Tabarrok, B. (1994), "Finite element analysis of an axially moving beam, Part I: time integration", J. Sound Vib., 178(4), 433-453. https://doi.org/10.1006/jsvi.1994.1497
- Suweken, G. and Van Horssen, W.T. (2003), "On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity", Nonlinear Dynam., 31(2), 197-223. https://doi.org/10.1023/A:1022053131286
- Tang, Y.Q., Chen, L.Q. and Yang, X.D. (2009), "Parametric resonance of axially moving Timoshenko beams with time-dependent speed", Nonlinear Dynam., 58(4), 715-724. https://doi.org/10.1007/s11071-009-9512-1
- Thurman, A.L. and Mote, C.D.J. (1969), "Free, periodic, nonlinear oscillation of an axially moving strip", J. Appl. Mech. - ASME, 36(1), 83-91. https://doi.org/10.1115/1.3564591
- Wickert, J.A. and Mote, C.D., Jr. (1988), "Current research on the vibration and stability of moving materials", Shock Vib., 20(5), 3-13. https://doi.org/10.1177/058310248802000503
- Yang, X.D., Zhang, W., Chen, L.Q. and Yao, M.H. (2012), "Dynamical analysis of axially moving plate by finite difference method", Nonlinear Dynam., 67(2), 997-1006. https://doi.org/10.1007/s11071-011-0042-2
Cited by
- Coupled global dynamics of an axially moving viscoelastic beam vol.51, 2013, https://doi.org/10.1016/j.ijnonlinmec.2012.12.008