참고문헌
- Bellamine, F.H. and Elkamel, A. (2008), "Model order reduction using neural network principal component analysis and generalized dimensional analysis", Eng. Comp. Int. J. Comp.-Aid Eng. Soft., 25(5), 443-463.
- Bentz, D.P. (2008), "A review of early-age properties of cement-based materials", Cement. Concrete Res., 38(2), 196-204. https://doi.org/10.1016/j.cemconres.2007.09.005
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Bishop, C.M. (1994), "Neural networks and their applications", Rev. Sci. Instrum., 65(6), 1803-1832. https://doi.org/10.1063/1.1144830
- Bolomey, J. (1995), "Granulation and prediction of probable strength of concrete (in French)", Trav., 19(30), 228-232.
- Boukhatem, B. (2011), Design of a computer integrated system for the knowledge of concrete with cement additions (SAICBA), PhD Thesis, University of Blida, Algeria, 150.
- Building Research Establishment (BRE) (1988), Design of normal concrete mixes, Department of the Environment, Watford, UK.
- Chanvillard, G. and D'Aloia, L. (1994), "Prediction of early age concrete compressive strength: Application of the equivalent time method", Bull. LPC, 193, 39-51.
- De Larrard, F., Naproux, P. and Waller, V. (1997), "Contribution of silica fume and silico-aluminates fume to concrete compressive strength: quantification", Bull. LPC, 208, 53-65.
- Dreyfus, G., Martinez, J.M., Samuelides, M., Gordon, M.B., Badran, F., Thiria, S. and Herault, L. (2002), Neural networks : methodologie and application, Ed. Eyrolles, 386.
- Gupta, R., Kewalramani, M.A. and Goel, A. (2006), Prediction of concrete strength using neural-expert system, J. Mater. Civil Eng., 18(3), 462-466. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(462)
- Harkat, M.F. (2003), Détection et localisation de défauts par analyse en composantes principales, Doctorate thesis, Lorraine Polytechnique, Nancy, 172.
- Jayaram, M.A., Nataraja, M.C. and Ravikumar, C.N. (2009), "Elitist genetic algorithm models: optimization of high performance concrete mixes", Mater. Manuf. Process, 24(2), 225-229. https://doi.org/10.1080/10426910802612387
- Joe, D. and Eng, P. (1995), Predicting the compressive strength of high performance silica fume concrete by Bayesian methods, Prepared for Department of Works, Services and Transportation, Government of Newfoundland and Labrador, St. John's, Canada.
- Jolliffe, I.T. (2002), Principal component analysis, 2nd ed., New York: Springer-Verlag, 486.
- Junita, M.S. and Brian, S.H. (2008), "Improved neural network performance using principal component analysis on Matlab", Comput. Integ. M., 16(2), 1-8.
- Kresta, J.V., MacGregor, J.F. and Marlin, T.E. (1991), "Multivariate statistical monitoring of process operating performance", Can. J. Chem. Eng., 69(1), 35-47. https://doi.org/10.1002/cjce.5450690105
- Kuniar, K. and Waszczyszyn, Z. (2006), "Neural networks and principal component analysis for identification of building natural periods", J. Comput. Civil Eng., 20(6), 431-436. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(431)
- Lecomte, A. and De Larrard, F. (2001), Mechling J.M., Concrete compressive strength with unoptimised granular skeleton, Bull. LPC, 234, 89-105.
- Lee, J.J., Kim, D., Chang, S.K. and Nocete, C.F.M. (2009), "An improved application technique of the adaptive probabilistic neural network for predicting concrete strength", Comp. Mater. Sci., 44(3), 988-998. https://doi.org/10.1016/j.commatsci.2008.07.012
- MacGregor, J.F. and Kourti, T. (1995), "Statistical process control of multivariate process", Control Eng. Pract., 3(3), 403-414. https://doi.org/10.1016/0967-0661(95)00014-L
- MacKay, D.J.C. (1992), "Bayesian interpolation", Neural. Comput., 4(3), 415-447. https://doi.org/10.1162/neco.1992.4.3.415
- Neural Network for user with MATLAB 7.5 (2007), The math works, Inc, Prentice Hall.
- Shin, S.W., Yun, C.B., Futura, H. and Popovics, J.S. (2008), "Non-destructive evaluation of crack depth in concrete using PCA-compressed wave transmission function and neural networks", Exp. Mech., 48(2), 225-231. https://doi.org/10.1007/s11340-007-9083-3
- Slonski, M. (2007), "HPC strength prediction using bayesian neural networks", Mech. Eng. Sci., 14(2), 345-52.
- Snell, L.M. and Wallace, J.V. (1989), "Predicting early concrete strength", Concrete Int., 11(12), 43-47.
- Topc, I.B. and Sardemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Uygunoglu, T. and Unal, O. (2006), "A new approach to determination of compressive strength of fly ash concrete using fuzzy logic", J. Sci. Ind. Res., 65(11), 894-899.
- Valle, S., Weihua, L. and Qin, S.J. (1999), "Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods", Ind. Eng. Chem. Res., 38(11), 4389-4401. https://doi.org/10.1021/ie990110i
- Xiaodong, C., Bin, C. and Guohua, L. (2007), "Optimization of concrete mixture based on BP ANN and genetic algorithms", J. Hydraul Eng.-ASCE, 26(5), 9-63.
- Yeh, I.C. (2006), "Exploring concrete slump model using artificial neural networks", J. Comput. Civil Eng., 20(3), 217-221. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(217)
- Zain, M.F.M., Nazrul Islam, Md. and Ir. Hassan Basri. (2005), "An expert system for mix design of high performance concrete", Adv. Eng. Softw., 36(5), 325-337. https://doi.org/10.1016/j.advengsoft.2004.10.008
피인용 문헌
- Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network 2018, https://doi.org/10.1007/s11709-017-0445-3
- An optimized classification algorithm by BP neural network based on PLS and HCA vol.43, pp.1, 2015, https://doi.org/10.1007/s10489-014-0618-x
- Simulation of Experimental Parameters of RC Beams by Employing the Polynomial Regression Method vol.52, pp.3, 2016, https://doi.org/10.1007/s11029-016-9590-3
- Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network 2017, https://doi.org/10.1007/s00521-017-3052-2
- The use of artificial neural networks in predicting ASR of concrete containing nano-silica vol.13, pp.6, 2014, https://doi.org/10.12989/cac.2014.13.6.739
- Repetitive model refinement for structural health monitoring using efficient Akaike information criterion vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1329
- Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix vol.124, 2016, https://doi.org/10.1016/j.conbuildmat.2016.07.145
- Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach vol.23, pp.3, 2017, https://doi.org/10.3846/13923730.2016.1144643
- A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure vol.149, 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.165
- Analog Circuit Soft Fault Diagnosis based on PCA and PSO-SVM vol.8, pp.12, 2013, https://doi.org/10.4304/jnw.8.12.2791-2796
- Radial Basis Function Network-Based Approach for Determining Interaction Behavior of Reinforced Concrete Rectangular Columns vol.39, pp.11, 2014, https://doi.org/10.1007/s13369-014-1401-3
- Neural networks and principle component analysis approaches to predict pile capacity in sand vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201714902025
- Neural networks and principle component analysis approaches to predict pile capacity in sand vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201814902025
- Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods vol.43, pp.12, 2018, https://doi.org/10.1007/s12046-018-0965-0
- Compressive strength prediction of limestone filler concrete using artificial neural networks vol.3, pp.3, 2018, https://doi.org/10.12989/acd.2018.3.3.289
- Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars vol.24, pp.4, 2012, https://doi.org/10.12989/cac.2019.24.4.329
- Connecting concrete technology and machine learning: proposal for application of ANNs and CNT/concrete composites in structural health monitoring vol.10, pp.39, 2012, https://doi.org/10.1039/d0ra03450a
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2012, https://doi.org/10.12989/acc.2020.10.6.479
- Principal Component Analysis as a Statistical Tool for Concrete Mix Design vol.14, pp.10, 2012, https://doi.org/10.3390/ma14102668
- Application of Principal Component Analysis Approach to Predict Shear Strength of Reinforced Concrete Beams with Stirrups vol.14, pp.13, 2021, https://doi.org/10.3390/ma14133471
- The utility of proper orthogonal decomposition for dimensionality reduction in understanding behavior of concrete vol.28, pp.2, 2012, https://doi.org/10.12989/cac.2021.28.2.129