Acknowledgement
Grant : study on the carbonation prediction of concrete using Portland blast furnace slag hydrationmodel
Supported by : National Research Foundation of Korea
References
- Breugel, K. (1995), "Numerical simulation of hydration and microstructural development in hardening cementbased materials (I) theory", Cement Concrete Res., 25(2), 319-331. https://doi.org/10.1016/0008-8846(95)00017-8
- Han, S.H. (2007), "Influence of diffusion coefficient on chloride ion penetration of concrete structure", Constr. Build. Mater., 21(2), 370-378. https://doi.org/10.1016/j.conbuildmat.2005.08.011
- Ishida, T., Iqbal, P.O. and Anh, H.T.L. (2009), "Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete", Cement Concrete Res., 39(10), 913-923. https://doi.org/10.1016/j.cemconres.2009.07.014
- Jensen, O.M. and Hansen, P.F. (2001), "Water-entrained cement based materials, I: principles and theoretical background", Cement Concrete Res., 31(4), 647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
- Logan, D.L. (2002), A first course in the finite element method, Brooks/Cole Thomson learning, United States.
- Maruyama, I., Suzuki, M. and Sato, R. (2005), "Prediction of temperature in ultra high-strength concrete based on temperature dependent hydration model", Proceedings of 7th Int. Symp. on High Performance Concrete, United States.
- Matsushita, T., Hoshino, S., Maruyama, I., Noguchi, T. and Yamada, K. (2007), "Effect of curing temperature and water to cement ratio on hydration of cement compounds", Proceedings of 12th international congress chemistry of cement, Montreal.
- Mehta, P.K. (2006), Concrete-microstructure, properties and materials, 3rd ed, MaGraw-Hill, New York.
- Navi, P. and Pignat, C. (1996), "Simulation of cement hydration and the connectivity of the capillary pore space", Adv. Cem. Base. Mater., 4(2), 58-67. https://doi.org/10.1016/S1065-7355(96)90052-8
- Pane, I. and Hansen, W. (2005), "Investigation of blended cement hydration by isothermal calorimetry and thermal analysis", Cement Concrete Res., 35(6), 1155-1164. https://doi.org/10.1016/j.cemconres.2004.10.027
- Papadakis, V.G. (1999a), "Experimental investigation and theoretical modeling of silica fume activity in concrete", Cement Concrete Res., 29(1), 79-86. https://doi.org/10.1016/S0008-8846(98)00171-9
- Papadakis, V.G. (1999b), "Effect of fly ash on Portland cement systems, Part I: low-calcium fly ash", Cement Concrete Res., 29(11), 1727-1736. https://doi.org/10.1016/S0008-8846(99)00153-2
- Papadakis, V.G. (2000), "Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress", Cement Concrete Res., 30(2), 291-299. https://doi.org/10.1016/S0008-8846(99)00249-5
- Papadakis, V.G., Faradis, M.N. and Vayenas, C.G. (1992), "Hydration and carbonation of pozzolanic cements", ACI Mater. J., 89(2), 119-130.
- Papadakis, V.G., Faradis, M.N. and Vayenas, C.G. (1996a), "Physicochemical process and mathematical modeling of concrete chlorination", Chem. Eng. Sci., 51(4), 505-513. https://doi.org/10.1016/0009-2509(95)00318-5
- Papadakis, V.G., Fardis, M.N. and Vayenas, C.G. (1996b), "Mathematical modeling of chloride effect on concrete durability and protection measures", Proceedings of Concrete Repair, Rehabilitation and Protection, London.
- Park, K.B., Noguchi, T. and Plawsky, J. (2005), "Modeling of hydration reaction using neural network to predict the average properties of cement paste", Cement Concrete Res., 35(9), 1676-1684. https://doi.org/10.1016/j.cemconres.2004.08.004
- Pereira, C.J. and Hegedus, L.L. (1984), "Diffusion and reaction of chloride ions in porous concrete", Proceedings of the 8th International Symposium of Chemical Reaction Engineering, Edinburgh.
- Saeki, T. and Monteiro, P.J.M. (2005), "A model to predict the amount of calcium hydroxide in concrete containing mineral admixture", Cement Concrete Res., 35(10), 1914-1921. https://doi.org/10.1016/j.cemconres.2004.11.018
- Song, H.W., Jang, J.C., Saraswathy, V. and Byun, K.J. (2007), "An estimation of the diffusivity of silica fume concrete", Build. Environ., 42(3), 1358-1367. https://doi.org/10.1016/j.buildenv.2005.11.019
- Tomosawa, F. (1997), "Development of a kinetic model for hydration of cement", Proceedings of tenth international congress chemistry of cement. Gothenburg.
- Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
Cited by
- Chloride penetration resistance of concrete containing ground fly ash, bottom ash and rice husk ash vol.13, pp.1, 2014, https://doi.org/10.12989/cac.2014.13.1.017
- Chloride diffusivity of concrete: probabilistic characteristics at meso-scale vol.13, pp.2, 2014, https://doi.org/10.12989/cac.2014.13.2.187
- Chloride diffusion in concrete associated with single, dual and multi cation types vol.17, pp.1, 2016, https://doi.org/10.12989/cac.2016.17.1.053
- Testing of the permeability of concrete box beam with ion transport method in service vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.461
- Modelling of chloride diffusion in saturated concrete vol.15, pp.1, 2015, https://doi.org/10.12989/cac.2015.15.1.127