DOI QR코드

DOI QR Code

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A. (Structural Engineering, Analysis and Mechanics Lab., Kansas State University) ;
  • El-Fattah, Ahmed M. Abd (Dept. of Architecture, King Fahd University of Petroleum and Minerals) ;
  • Esmaeily, Asad (Structural Engineering, Analysis and Mechanics Lab., Kansas State University) ;
  • Jones, John P. (Bridge Design Office, Bureau of Design, Kansas Department of Transportation) ;
  • Hurst, Kenneth F. (Bridge Design Office, Bureau of Design, Kansas Department of Transportation)
  • Received : 2010.11.23
  • Accepted : 2012.01.10
  • Published : 2012.10.25

Abstract

This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Keywords

References

  1. Aschheim, M., Gil-Martin, L.M. and Hernandes-Montes, E. (2011), "Proportioning of reinforced concrete column sections", Eng. Struct., 33(2), 685-688. https://doi.org/10.1016/j.engstruct.2010.10.007
  2. Anwar, N. and Qaasim, M. (2009), "Parametric study of reinforced concrete column cross-section for strength and ductility", Key Eng. Mater., 400-402, 269-274. https://doi.org/10.4028/www.scientific.net/KEM.400-402.269
  3. AASHTO (2008), "AASHTO LRFD bridge design specifications, interim", American Association of State Highway and Transportation Officials.
  4. Balan, T.A., Spacone, E. and Kwon, M. (2001), "A 3D hypoplastic model for cyclic analysis of concrete structures", Eng. Struct., 23(4), 333-342. https://doi.org/10.1016/S0141-0296(00)00048-1
  5. Braga, F., Gigliotti, R. and Laterza, M. (2006), "Analytical stress-strain relationship for concrete confined by steel stirrups and/or FRP jackets", J. Struct. Eng.-ASCE, 132(9), 1402-1416. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1402)
  6. Carpinteri, A., Corrado, M., Goso, G. and Paggi, M. (2012), "Size-scale effects on interaction diagrams for reinforced concrete columns", Constr. Build. Mater., 27(1), 271-279. https://doi.org/10.1016/j.conbuildmat.2011.07.047
  7. Computers & Structures, Inc. (2006), "CSi Section Builder version 8.1.5", CSi, http://www.csiberkeley.com/products_SECTION.html.
  8. Computers & Structures, Inc. (2011), "CSi COL version 8.3.2", CSi, http://www.csiberkeley.com/products_CSICOL.html.
  9. Darwin, D. and Pecknold, D.A. (1977), "Nonlinear biaxial stress-strain law for concrete", J. Eng. Mech.-ASCE, 103(2), 229-241.
  10. Esmaeily, A. and Lucio, K. (2002), "Analytical performance of reinforced concrete columns using various analytical models: in international symposium of confined concrete, Xiao, Y., Kunnath, S. and Yi, W.", Am. Concrete Inst., 238, 95-110.
  11. Esmaeily, A. and Xiao, Y. (2004), "Behavior of reinforced concrete columns under variable axial loads", ACI Struct. J., 101(1), 124-132.
  12. Fafitis, A. and Shah, S.P. (1985), "Predictions of ultimate behavior of confined columns subjected to large deformations", ACI J., 82(4), 423-433.
  13. Fam, A., Flisak, B. and Rizkalla, S. (2003), "Experimental and analytical modeling of concrete-filled fiber reinforced polymer tubes subjected to combined bending and axial loads", ACI Struct. J., 100(4), 529-539.
  14. Kara, I.F. and Dundar, C. (2009a), "Prediction of deflection of reinforced concrete shear walls", Adv. Eng. Softw., 40(9), 777-785. https://doi.org/10.1016/j.advengsoft.2009.02.002
  15. Kara, I.F. and Dundar, C. (2009b), "Effect of loading types and reinforcement ratio on an effective moment of inertia and deflection of a reinforced concrete beam", Adv. Eng. Softw., 40(9), 836-846. https://doi.org/10.1016/j.advengsoft.2009.01.009
  16. Kim, Y.M., Kim, C.K. and Lee, J.C. (2009), "Rough set algorithm for crack category determination of reinforced concrete structures", Adv. Eng. Softw., 40(3), 202-211. https://doi.org/10.1016/j.advengsoft.2008.04.002
  17. Kwon, M. and Spacone, E. (2002), "Three-dimensional finite element analyses of reinforced concrete columns", Comput. Struct., 80(2), 199-212. https://doi.org/10.1016/S0045-7949(01)00155-9
  18. Mander, J.B., Priestley, M.J.N. and Park, R. (1988a), "Theoretical stress-strain model for confined concrete", J. Struct. Eng.-ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  19. Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), "Observed stress-strain behavior of confined concrete", J. Struct. Eng.-ASCE, 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
  20. Milton de Araújo, J. (2001), "Probabilistic analysis of reinforced concrete columns", Adv. Eng. Softw., 32(12), 871-879. https://doi.org/10.1016/S0965-9978(01)00042-4
  21. Oreta, A.W.C. and Ongpeng, J.M.C. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597
  22. Rasheed, H.A. and Dinno, K.S. (1994), "An efficient nonlinear analysis of R.C. sections", Comput. Struct., 53(3), 613-623. https://doi.org/10.1016/0045-7949(94)90105-8
  23. Samra, R.M., Deeb, N.A. and Madi, U.R. (1996), "Transverse steel content in spiral concrete columns subject to eccentric loading", ACI J., 93(4), 412-419.
  24. Song, Z. and Lu, Y. (2011), "Numerical simulation of concrete confined by transverse reinforcement", Comput. Concrete, 8(1), 23-41. https://doi.org/10.12989/cac.2011.8.1.023
  25. Structure Point, LLC (2002-2011), "PCA Column version 4.10 or SP Column version 4.20", Structure Point:Concrete Software Solutions, http://www.structurepoint.org/soft/soft_profile.asp?l_family_id=30.
  26. Tanyildizi, H. (2009), "Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete", Adv. Eng. Softw., 40(3), 161-169. https://doi.org/10.1016/j.advengsoft.2007.05.013
  27. Tayem, A and Najmi, A. (1996), "Design of round reinforced concrete columns", J. Struct. Eng.-ASCE, 122(9), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1062)
  28. Yeh, F.Y. and Chang, K.C. (2007), "Confinement efficiency and size effect of FRP confined circular concrete columns", Struct. Eng. Mech., 26(2), 127-150. https://doi.org/10.12989/sem.2007.26.2.127