References
- Aleva, L.V., Castro, P., Andez, G.H.D. and Schorr, M. (1998), "The corrosion performance of steel and reinforced concrete in a tropical humid climate: A review", Corros. Rev., 16(3), 235-284.
- Basheer, L., Kropp, J. and Cleland, D.J. (2001), "Assessment of the durability of concrete from its permeation properties: A review", Constr. Build. Mater., 15(2), 93-103. https://doi.org/10.1016/S0950-0618(00)00058-1
- Castro, P., Moreno, E.I. and Genesca, J. (2000), "Influence of marine micro-climates on carbonation of reinforced concrete buildings", Cement Concrete Res., 30(10), 1565-1571. https://doi.org/10.1016/S0008-8846(00)00344-6
- Castro, P., An, M.S. and Genesca, J. (1999), "Carbonation of concretes in the mexican gulf", Build Environ., 35(2), 145-149.
- Chindaprasirt, P., Rukzon, S. and Sirivivatnanon, V. (2008), "Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar", Constr. Build. Mater., 22(8), 1701-1707. https://doi.org/10.1016/j.conbuildmat.2007.06.002
- David, C., Francine, L. and Eugen, B. (2010), "Comprehensive modeling of chloride ion and water ingress into concrete considering thermal and carbonation state for real climate", Cement Concrete Res., 40(1), 109-118. https://doi.org/10.1016/j.cemconres.2009.08.007
- Dias, W.P.S. (2000), "Reduction of concrete sorptivity with age through carbonation", Cement Concrete Res., 30(8), 1255-1261. https://doi.org/10.1016/S0008-8846(00)00311-2
- Emmanuel, R. and Ahmed, L. (2009), "A performance based approach for durability of concrete exposed to carbonation", Constr. Build. Mater., 23(1), 190-199. https://doi.org/10.1016/j.conbuildmat.2008.01.006
- Frias, M. and Cabrera, J. (2000), "Pore size distribution and degree of hydration of metakaolin-cement pastes", Cement Concrete Res., 30(4), 561-569. https://doi.org/10.1016/S0008-8846(00)00203-9
- Glass, G.K., Page, C.L. and Short, N.R. (1991), "Factors affecting the corrosion rate of steel in carbonated motars", Corros. Sci., 32(12), 1283-1294. https://doi.org/10.1016/0010-938X(91)90048-T
- Ihekwaba, N.M., Hope, B.B. and Hanaaon, C.M. (1996), "Carbonation and electrochemical chloride extraction from concrete", Cement Concrete Res., 26(7), 1095-1107. https://doi.org/10.1016/0008-8846(96)00076-2
- Jiang, L. and Guan, Y. (1999), "Pore structure and its effect on strength of high-volume fly ash paste", Cement Concrete Res., 29(4), 631-633. https://doi.org/10.1016/S0008-8846(99)00034-4
- Matusinovic, T., Sipusic, J. and Vrbos, N. (2003), "Porosity-strength relation in calcium aluminate cement pastes", Cement Concrete Res., 33(11), 1801-1806. https://doi.org/10.1016/S0008-8846(03)00201-1
- Mehta, P.K. and Monteiro, P.J.M. (1993), Concrete: structure, properties, and materials, Prentice Hall, New Jersey.
- Mien, T.V., Stitmannaithum, B. and Nawa, T. (2011), "Prediction of chloride diffusion coefficient of concrete under flexural cyclic load", Comput. Concrete, 8(3), 343-355. https://doi.org/10.12989/cac.2011.8.3.343
- Misra, S., Yamamoto, A. and Tsutsumi, T. (1994), "Application of rapid chloride permeability test to qualify control of concrete", Proceedings of 3rd international conference on concrete durability, France, May.
- Ngala, V.T. and Page, C.L. (1997), "Effect of carbonation on pore structure and diffusional properties of hydrated cement paste", Cement Concrete Res., 27(7), 995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
- Ngala, V.T., Page, C.L., Parrott, L.J. and Yu, S.W. (1995), "Diffusion in cementitious materials: II. Further investigations of chloride and oxygen diffusion in well-cured OPC and pastes", Cement Concrete Res., 25(4), 819-826. https://doi.org/10.1016/0008-8846(95)00072-K
- Pandey, S.P. and Sharma, R.L. (2000), "The influence of mineral additives on the strength and porosity of OPC mortar", Cement Concrete Res., 30(1), 19-23. https://doi.org/10.1016/S0008-8846(99)00180-5
- Reddy, B., Glass, G.K., Lim, P.J. and Buenfeld, N.R. (2002), "On the corrosion risk presented by chloride bound in concrete", Cement Concrete Comp., 24(1), 1-5. https://doi.org/10.1016/S0958-9465(01)00021-X
- Roy, S.K., Poh, K.B. and Northwood, D.O. (1999), "Durability of concrete accelerated carbonation and weathering studies", Build Environ., 34(5), 597-606. https://doi.org/10.1016/S0360-1323(98)00042-0
- Ruan, X. and Pan, Z. (2012), "Mesoscopic simulation method of concrete carbonation process", Struct. Infrastruct. E., 8(2), 99-110. https://doi.org/10.1080/15732479.2011.605370
- Samaha, H.R. and Hover, K.C. (1992), "Influence of microcracking on the mass transport properties of concrete", ACI Mater. J., 89(4), 416-424.
- Shi, C. (1996), "Strength, pore structure and permeability of alkali-activated slag mortars", Cement Concrete Res., 26(12), 1789-1799. https://doi.org/10.1016/S0008-8846(96)00174-3
- Song, H.W. and Kwon, S.J. (2007), "Permeability characteristics of carbonated concrete considering capillary pore structure", Cement Concrete Res., 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
- Suryavanshi, A. and Swamy, R. (1996), "Stability of Friedel's salt in carbonated concrete structural elements", Cement Concrete Res., 26(5), 729-741. https://doi.org/10.1016/S0008-8846(96)85010-1
- Tumidajski, P.J. and Chan, G.W. (1996s), "Effect of sulfate and carbon dioxide on chloride diffusmty", Cement Concrete Res., 26(4), 551-556. https://doi.org/10.1016/0008-8846(96)00019-1
- Uchikawa, H., Hanehara, S. and Hirao, H. (1996), "Influence of microstructure on the physical properties of concrete prepared by substitutingmineral powder for part of fine aggregate", Cement Concrete Res., 26(1), 101-111. https://doi.org/10.1016/0008-8846(95)00193-X
- Villain, G. and Platret, G. (2006), "Two experimental methods to determine carbonation proles in concrete", ACI Mater. J., 103(4), 265-271.
- Wanga, Y., Li, L. and Page, C.L. (2005), "Modelling of chloride ingress into concrete from a saline environment", Build. Environ., 40(12), 1573-1582. https://doi.org/10.1016/j.buildenv.2005.02.001
- Wang, L. and Ueda, T. (2011), "Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence", Comput. Concrete, 8(2), 125-142. https://doi.org/10.12989/cac.2011.8.2.125
- Yang, C.C. (2006), "On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials", Cement Concrete Res., 36(7), 1304-1311. https://doi.org/10.1016/j.cemconres.2006.03.007
- Yang, C.C., Cho, S.W., Chi, J.M. and Huang, R. (2003), "An electrochemical method for accelerated chloride migration test in cement-based materials", Mater. Chem. Phys., 77(2), 461-469. https://doi.org/10.1016/S0254-0584(02)00102-5
- Yoon, I. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
Cited by
- A reaction-diffusion modeling of carbonation process in self-compacting concrete vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.847
- A simplified method to determine the chloride migration coefficient of concrete by the electric current in steady state vol.13, pp.1, 2014, https://doi.org/10.12989/cac.2014.13.1.117
- Chloride diffusivity of concrete: probabilistic characteristics at meso-scale vol.13, pp.2, 2014, https://doi.org/10.12989/cac.2014.13.2.187
- Modelling of chloride diffusion in saturated concrete vol.15, pp.1, 2015, https://doi.org/10.12989/cac.2015.15.1.127
- Carbonation depth in 57 years old concrete structures vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.953
- Chloride penetration into concrete in an offshore platform-analysis of exposure conditions vol.103, 2015, https://doi.org/10.1016/j.oceaneng.2015.04.079
- Ingress of chloride ions with carbonation: parameter estimation and analytical simplification pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1528894
- Mechanical Properties of High Strength Desert Sand Concrete vol.1095, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amr.1095.263
- Relationship between pore structure and chloride diffusion in cementitious materials vol.229, pp.None, 2019, https://doi.org/10.1016/j.conbuildmat.2019.116868