References
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Akkurt, S., Ozdemir, S., Tayfur, G. and Akyol, B. (2003), "The use of GA-ANNs in the modelling of compressive strength of cement mortar", Cement. Concrete Res., 33(7), 973-979. https://doi.org/10.1016/S0008-8846(03)00006-1
- Baykaso lu, A., Dereli, T. and Tan s, S. (2004), "Prediction of cement strength using soft computing techniques", Cement. Concrete Res., 34(11), 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028
- Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Castro, P.F. (1987), "Concrete strength-comparison between non-destructive tests", Proc of 4th Int Conf on Durability of Building Materials and Components, Singapore, 885-890.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Hola, J. and Schabowicz, K. (2005), "Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manag., 11(1), 23-32.
- Kaveh, A. and Khalegi, A. (1998), "Prediction of strength for concrete specimens using artificial neural networks", Adv. Civil Eng. Comput. Technol., Ed. B.H.V. Topping, Saxe-Coburg Publications, Edinburgh, 165-171.
- Kheder, G.F., Al-Gabban, A.M. and Abid, S.M. (2003), "Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", Mater. Struct., 36(10), 693-701. https://doi.org/10.1007/BF02479504
- Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", Constr. Build. Mater., 11(2), 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Lyse, I. (1932), Test on consistence and strength of concrete having constant water content, ASTM Proc, 32(1), 629-636.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011
- Marquardt, D. (1963), "An algorithm for least-squares estimation of nonlinear parameters", SIAM J. Appl. Math., 11(2), 431-441. https://doi.org/10.1137/0111030
- Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008
- Neville, A.M. (1995), Properties of concrete, Prentice Hall.
- Ozcan, F., Atis, C.D., Karahan, O., Uncuo lu, E. and Tanyildiz, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Pala, M., Ozbay, O., Oztas, A. and Yuce, M.I. (2005), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394.
- Park, B.J., Pedrycz, W. and Oh, S.K. (2002), "Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling", IEEE T. Fuzzy. Syst., 10(5), 607-621. https://doi.org/10.1109/TFUZZ.2002.803495
- Popovics, S. and Ujhelyi, J. (2008), "Contribution to the concrete strength versus water-cement ratio relationship", J. Mater. Civil. Eng., 20(7), 459-463. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:7(459)
- Ramezanianpour, A.A., Sobhani, M. and Sobhani, J. (2004), "Application of network based neuro-fuzzy system for prediction of the strength of high strength concrete", Am. J. Sci. Technol., 5(59), 78-93.
- Rasa, E., Ketabchi, H. and Afshar, M.H. (2009), "Predicting density and compressive strength of concrete cement paste containing silica fume using artificial neural networks", Sci. Iran., 16(1), 32-42.
- Sarydemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
- Sebastia, M., Olmo, I.F. and Irabien, A. (2003), "Neural network prediction of unconfined compressive strength of coal fly ash-cement mixtures", Cement. Concrete Res., 33(8), 1137-1146. https://doi.org/10.1016/S0008-8846(03)00019-X
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compression strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Tang, C.W., Lin, Y. and Kuo, S.F. (2007), "Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs", Comput. Concrete, 4(6), 437-456. https://doi.org/10.12989/cac.2007.4.6.437
- Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010
- Topcu, I.B. and Saridemir, M. (2008a), "Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Topcu, I.B. and Saridemir, M. (2008b), "Prediction of rubberized concrete properties using artificial neural network and fuzzy logic", Constr. Build. Mater., 22(4), 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007
- Wang, J.Z., Ni, H.G. and He, J.Y. (1999a), "The application of automatic acquisition of knowledge to mix design of concrete", Cement Concrete Res., 29(12), 1875-1880. https://doi.org/10.1016/S0008-8846(99)00152-0
- Wang, J.Z., Wen, X.M., Huang, Y.X. and Jiang, K.C. (1999b), "Dynamics and strength analysis of a MK-II screen", J. China Coal Soc., 24(2), 184-188.
- Waszczyszyn, Z. and Ziemianski, L. (2001), "Neural networks in mechanics of structures and materials-new results and prospects of applications", Comput. Struct., 79(22-25), 2261-2276. https://doi.org/10.1016/S0045-7949(01)00083-9
- Yeh, I. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J Comp. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Zarandi, M.H.F., Turksen, I.B., Sobhani, J. and Ramezanianpour, A.A. (2008), "Fuzzy polynomial neural networks for approximation of the compressive strength of concrete", Appl. Soft. Comput., 8(1), 488-498. https://doi.org/10.1016/j.asoc.2007.02.010
Cited by
- Neural network based model for seismic assessment of existing RC buildings vol.12, pp.2, 2013, https://doi.org/10.12989/cac.2013.12.2.229
- Predictive modeling of concrete compressive strength based on cement strength class vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.587
- Prediction of compressive strength of concrete using multiple regression model vol.45, pp.6, 2012, https://doi.org/10.12989/sem.2013.45.6.837
- Residual load carrying capacity of reinforced concrete cylinders after heating at elevated temperature vol.2, pp.10, 2020, https://doi.org/10.1007/s42452-020-03483-7