DOI QR코드

DOI QR Code

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza (Doust Construction Engineering Group Co.) ;
  • Mirzadeh, Hamed (Department of Materials Engineering, Isfahan University of Technology)
  • 투고 : 2011.09.09
  • 심사 : 2111.11.05
  • 발행 : 2012.07.25

초록

Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

키워드

참고문헌

  1. Bescher, E., Sambol, M., Rice, E.K. and Mackenzie, J.D. (2004), "Determination of water-to-cement ratio in freshly mixed rapid-setting calcium sulfoaluminate concrete using 2.45 GHz microwave radiation", Cement Concrete Res., 34(5), 807-812. https://doi.org/10.1016/j.cemconres.2003.09.023
  2. Gupta, R., Kewalramani, M.A. and Goe, A. (2006), "Prediction of concrete strength using neural-expert system", J. Mater. Civil Eng., 18(3), 462-466. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(462)
  3. Hadi, M.N.S. (2003), "Neural networks applications in concrete structures", Comput. Struct., 81(6), 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0
  4. Jo, B.W., Kim, C.H., Tae, G.H. and Park, J.B. (2007), "Characteristics of cement mortar with nano-$SiO_2$ particles", Constr. Build. Mater., 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  5. Kim, D.K., Lee, J.J., Lee, J.H. and Chang, S.K. (2005), "Application of probabilistic neural networks for prediction of concrete strength", J. Mater. Civil Eng., 17(3), 353-362. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(353)
  6. Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004a), "Microstructure of cement mortar with nano-particles", Compos. Part B-Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  7. Li, H., Xiao, H.G. and Ou, J. (2004b), "A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials", Cement Concrete Res., 34(3), 435-438. https://doi.org/10.1016/j.cemconres.2003.08.025
  8. Li, Z., Wang, H., He, S., Lu, Y. and Wang, M. (2006), "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., 60(3), 356-359. https://doi.org/10.1016/j.matlet.2005.08.061
  9. Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L. and Tsai, M.C. (2008), "Effects of nano-$SiO_2$ and different ash particle sizes on sludge ash-cement mortar", J. Environ. Manage., 88(4), 708-714. https://doi.org/10.1016/j.jenvman.2007.03.036
  10. Mirzadeh, H. and Najafizadeh, A. (2009a), "Modeling the reversion of martensite in the cold worked AISI 304 stainless steel by artificial neural networks", Mater. Design, 30(3), 570-573. https://doi.org/10.1016/j.matdes.2008.05.057
  11. Mirzadeh, H. and Najafizadeh, A. (2009b), "ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels", J. Alloy Compd., 476(1-2), 352-355. https://doi.org/10.1016/j.jallcom.2008.08.046
  12. Oh, J.W., Lee, L.W., Kim, J.T. and Lee, G.W. (1999), "Application of neural networks for proportioning of concrete mixes", ACI Mater. J., 96(1), 61-67.
  13. Peng, C.H., Yeh, I.C. and Lien, L.C. (2009), "Modeling strength of high-performance concrete using genetic operation trees with pruning techniques", Comput Concrete, 6(3), 203-223. https://doi.org/10.12989/cac.2009.6.3.203
  14. Philippidis, T.P. and Aggelis, D.G. (2003), "An acousto-ultrasonic approach for the determination of water-tocement ratio in concrete", Cement Concrete Res., 33(4), 525-538. https://doi.org/10.1016/S0008-8846(02)00999-7
  15. Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Inuence of nano-$SiO_2$ addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
  16. Rao, G.A. (2001), "Generalization of Abrams' law for cement mortars", Cement Concrete Res., 31(3), 495-502. https://doi.org/10.1016/S0008-8846(00)00473-7
  17. Yeh, L.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
  18. Yeh, I.C. (2008a), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, 5(6), 559-572. https://doi.org/10.12989/cac.2008.5.6.559
  19. Yeh, I.C. (2008b), "Prediction of workability of concrete using design of experiments for mixtures", Comput. Concrete, 5(1), 1-20. https://doi.org/10.12989/cac.2008.5.1.001

피인용 문헌

  1. Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach vol.115, 2017, https://doi.org/10.1016/j.matdes.2016.11.058
  2. The use of artificial neural networks in predicting ASR of concrete containing nano-silica vol.13, pp.6, 2014, https://doi.org/10.12989/cac.2014.13.6.739