References
- ACI Committee 318-2005 (2005), "Building code requirements for structural concrete (ACI 318-05) and commentary (318R-05)", American Concrete Institute, Farmington Hills, Mich.
- ACI Committee 318-71 (1971), "Building code requirements for structural concrete and commentary", American Concrete Institute, Detroit.
- ACI Committee 318-89 (1989), "Building code requirements for structural concrete and commentary", American Concrete Institute, Detroit.
- ACI Committee 318-95 (1995), "Building code requirements for structural concrete and commentary", American Concrete Institute, Detroit.
- Anderson, P. (1935), "Experiments with concrete in torsion", Trans. ASCE, 60, 641-652.
- AS3600 (2001), "Concrete structures, Standarts Association of Australia".
- Bai, Y.Y., Zhuang, H. and Wang, D. (2006), Advanced fuzzy logic technologies in industrial applications, Springer.
- BS8110 (1985), "Structural use of concrete-Part 2" British Standards
- Canadian Standard Association (1994), Design of concrete structures: Structure design. CSA Standard, A23-3- 94, Canadian Standard Association, Rexdale, Ontario.
- Ceylan, M., Arslan, M.H., Ceylan, R., Kaltakc, M.Y. and Ozbay, Y. (2010), "A new application area of ANN and ANFIS: determination of earthquake load reduction factor of prefabricated industrial buildings", Civ. Eng. Environ. Syst., 27(1), 53-69. https://doi.org/10.1080/10286600802506726
- Collins, C.D. Walsh, P.F. Archer, F.E. and Hall, A.S. (1965), "Reinforced concrete beams subjected to conbined torsion and shear", UNICIV Report, No.R-14, University of New South Wales.
- Collins, C.P. and Mitchell, D. (1980), "Shear and torsion design of prestressed and non-prestressed concrete beams", PCI J., 25(5), 32-100.
- Elfegren, L., Karlsson, I. and Losberg, A. (1974), "Torsion bending-shear interaction for concrete beams", J. Struct. Div. ASCE, 100, 1657-1676.
- European Standard. Eurocode 2 (2002), Design of concrete structures, prEN, 1992-1-1, Draft for stage 49, Commission of the European Communities, European Committee for Standardization.
- Evbuowman, N.F.O., Sivaloganathan, S. and Jebb, A. (1996), "A survey of design philosophies, models, methods and systems", P. I. Mech. Eng. B-J. Eng., 210(42), 301-320.
- Fang, I.K. and Shiau, J.K. (2004), "Torsional behavior of normal and high strength concrete beams", ACI Struct. J., 101(3), 304-313.
- Gallant, S.I. (1993), Neural network learning and expert systems, The MIT Press.
- Ghorbani, A. and Ghasemi, M.R. (2010), "An efficient method for reliability based optimization of structures using adaptive neuro-fuzzy systems", J. Mod. Simul. Syst., 1(1), 13-21.
- Haris, J. (2006), Fuzzy logic applications in engineering science, Springer.
- Hossain, T. and Mendis, P., Aravinthan, T. and Baker, G. (2006), "Torsional resistance of highstrength concrete beams", 19th Australasian Conference on the Mechanics of Structures and Materials, Christchurch, NZ.
- Hsu, T.T.C. (1968), Torsion of structural concrete-behavior of reinforced concrete rectangular members, Torsion of structural concrete SP-18, ACI, 261-306.
- Hsu, T.T.C. (1968), "Ultimate torque of reinforced concrete members", J. Struct. Div. ASCE, 94, 485-510.
- Hsu, T.T.C. and Mo, Y.L. (1985), "Softening of concrete in torsional members-design recommendation", ACI J., 82(4), 443-452.
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neuro-fuzzy and soft computing, A computational approach to learning and machine intelligence, Prentice Hall.
- Kasabov, K.N. (1996), Foundation of neural networks, fuzzy systems and knowledge engineering, MIT Press.
- Kim, H.S., Paul, N.R., Lin, P.Y. and Loh, C.H. (2006), "Neuro-fuzzy model of hybrid semi-active base isolation system with FPS bearings and an MR damper", Eng. Struct., 28(7), 947-958. https://doi.org/10.1016/j.engstruct.2005.09.029
- Koutchoukali, N.E. and Belarbi, G. (2001), "Torsion of high strength reinforced concrete beams and minimum reinforcement requirement", ACI Struct. J., 98(4), 462-469.
- Lessig, N.N. (1959), "Determination of carriying capacity of reinforced concrete elements with rectangular crosssection subjected to flexure with torsion", Zhelezonabetona, 5, 5-28.
- Mashrei, M.A., Abdulrazzaq, N., Turki, Y. Abdalla and M.S. Rahman (2010), "Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members", Eng. Struct., 32(6), 1723-1734. https://doi.org/10.1016/j.engstruct.2010.02.024
- McMullen, A.E. and Rangan, B.V. (1978), "Pure torsion in rectangular section-A reexamination", ACI J., 75, 511-519.
- Murawski, K., Arciszewski, T. and De Jong, K. (2000), "Evolutionary computation in structural design", Eng. Comput., 16(3-4), 275-286. https://doi.org/10.1007/PL00013716
- Nawy, E.G. (2003), Reinforced concrete, A fundamental approach, Pearson Education.
- Rajasekaran, S., Suresh, D. and Vijayalakshmi Pai, G.A. (2002), "Application of sequential learning neural networks to civil engineering modeling problems", Eng. Comput., 18(2), 138-147. https://doi.org/10.1007/s003660200012
- Rao, S.S., Nahm, A., Shi, Z., Deng, X. and Syamil, A. (1999), "Artificial intelligence and expert systems applications in new product development: A survey", J. Int. Manuf., 10(3-4), 231-244. https://doi.org/10.1023/A:1008943723141
- Rasmussen, L.J. and Baker, G. (1994), "Assessment of torsional strength in reinforced normal and high-strength concrete beams", Austral. Civil Eng. Trans., IEAust., 36(2), 165-171.
- Rasmussen, L.J. and Baker, G. (1995), "Torsion in reinforced normal and high strength concrete beams Part-I : An experimental test series", ACI Struct. J., 92(1), 56-62.
- Rausch, E. (1929), "Design of reinforced concrete in torsion", Technische Hochschule, Berlin, 53. (in German).
- Regli, W.C., Hu, X., Atwood, M. and Sun, W. (2000), "A Survey of design rationale systems: Approaches, representation, capture and retrieval", Eng. Comput., 16(3-4), 209-235. https://doi.org/10.1007/PL00013715
- Rutkowski, L. (2004), Flexible neuro-fuzzy systems: Structures, learning and performance evaluation, Kluwer Academic Publishers.
- Saridakisa, K.M., Dentsorasa, A.J., Radelb, P.E., Saridakisb, V.G. and Exintarib, N.V. (2006), "Neuro-fuzzy casebased design: An application in structural design", Intell. Prod. Mach. Syst., 2nd IProms Virtual Conferences, 407-412.
- Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K. (2001), "Metamodels for computer-based engineering design: survey and recommendations", Eng. Comput., 17(2), 129-150. https://doi.org/10.1007/PL00007198
- Sivanandam, S.N., Sumathi, S. and Deepa, S.N. (2007), Introduction to fuzzy logic using MATLAB, Springer.
- Tang, C.W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. https://doi.org/10.12989/cac.2006.3.5.335
- TBC-500-2000 (2000), Requirements for design and construction of reinforced concrete structures, Turkish Standards TS-500, Ankara.
- Victor, D.J. and Muthukrishnan, R. (1973), "Effect of stirrups on ultimate torque of reinforced concrete beams", ACI J., 70(4), 300-306.
- Wang, Y.M. and Elhag, T.H.M. (2008), "An adaptive neuro-fuzzy inference system for bridge risk assessment", Expert Syst. Appl., 34(4), 3099-3106. https://doi.org/10.1016/j.eswa.2007.06.026
- Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control., 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zang, Y. (2002), "Torsion in high strength concrete rectangular beams", Master thesis, University of Nevada.
- Zia, P. and Hsu, T.T.C. (2004), "Design for torsion and shear in prestressed concrete", PCI J. Prescast/Prest. Concrete Inst., 49(3), 34-42.
Cited by
- An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams vol.47, pp.2, 2013, https://doi.org/10.12989/sem.2013.47.2.247
- Support vector machines in structural engineering: a review vol.21, pp.3, 2015, https://doi.org/10.3846/13923730.2015.1005021
- Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion vol.46, pp.4, 2013, https://doi.org/10.12989/sem.2013.46.4.519
- Parametric analysis and torsion design charts for axially restrained RC beams vol.55, pp.1, 2015, https://doi.org/10.12989/sem.2015.55.1.001
- Ultimate torsional behaviour of axially restrained RC beams vol.16, pp.1, 2015, https://doi.org/10.12989/cac.2015.16.1.067
- Bending strength diagnosis for corroded reinforced concrete beams with attendance of deterministic, random and fuzzy parameters vol.5, pp.3, 2020, https://doi.org/10.1080/24705314.2020.1765268