References
- Adley, M.D., Frank, A.O., Danielson, K.T., Akers, S.A. and O'Daniel, J.L. (2010), "The virtual penetration laboratory: new developments for projectile penetration in concrete", Comput. Concrete, 7(2), 87-102. https://doi.org/10.12989/cac.2010.7.2.087
- Akers, S.A., Adley, M.D. and Cargile, J.D. (1995), "Comparison of constitutive models for geologic materials used in penetration and ground shock calculations", Proceedings of the 7th International Symposium on the Interaction of Conventional Munitions with Protective Structures, Mannheim FRG.
- Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D. and Akers, S.A. (2000), "Microplane model M4 for concrete, I: formulation with work-conjugate deviatoric stress", J. Eng. Mech.-ASCE, 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)
- Bazant, Z.P., Xiang, Y. and Prat, P.C. (1996), "Microplane model for concrete: I. Stress-strain boundaries and finite strain", J. Eng. Mech.-ASCE, 122(3), 245-254. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:3(245)
- Bazant, Z.P., Xiang, Y., Adley, M.D., Prat, P.C. and Akers, S.A. (1996), "Microplane model for concrete: II. Data delocalization and verification", J. Eng. Mech.-ASCE, 122(3), 255-262. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:3(255)
- Bazant, Z.P. and Oh, B.H. (1986), "Efficient numerical integration on the surface of a sphere", ZAMM.-Z. Angew. Math. Me., 66(1), 37-49. https://doi.org/10.1002/zamm.19860660108
- Caner, F.C. and Bazant, Z.P. (2000), "Microplane model M4 for concrete. II: algorithm and calibration", J. Eng. Mech.-ASCE, 126(9), 954-961. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(954)
- Cargile, J.D. (1999), "Development of a constitutive model for numerical simulations of projectile penetration into brittle geomaterials", Technical Report SL-99-11, U.S. Army Engineer Research and Development Center, Vicksburg, MS.
- Danielson, K.T., Adley, M.D. and O'Daniel, J.L. (2010), "Numerical procedures for extreme impulsive loading on high strength concrete structures", Comput. Concrete, 7(2), 159-167. https://doi.org/10.12989/cac.2010.7.2.159
- Frank, A.O., Adley, M.D., Danielson, K.T. and McDevitt, J.S. (2010), "The high-rate brittle microplane concrete model: Part II: application to projectile perforation of concrete slabs", Comput. Concrete.
- Frank, A.O. and Adley, M.D. (2007), "On the importance of a three-invariant model for simulating the perforation of concrete slabs", Proceedings of the 78th Shock and Vibration Symposium, Philadelphia, PA, 4-8.
- Frew, D.J., Cargile, J.D. and Ehrgott, J.Q. (1993), "WES Geodynamics and projectile penetration research facilities", Proceedings of the Symposium on Advances in Numerical Simulation Techniques for Penetration and Perforation of Solids, 1993 ASME Winter Annual Meeting, New Orleans, LA, 28.
- Furukawa, T., Sugata, T., Yoshimura, S. and Hoffman, M. (2002), "An automated system for simulation and parameter identification of inelastic constitutive models", Comput. Meth. Appl. Mech. Eng., 191(21-22), 2235-2260. https://doi.org/10.1016/S0045-7825(01)00375-9
- Littlefield, D., Walls, K.C. and Danielson, K.T. (2010), "Integration of the microplane constitutive model into the EPIC code", Comput. Concrete., 7(2), 145-158. https://doi.org/10.12989/cac.2010.7.2.145
- Marquardt, D. (1963), "An algorithm for least-squares estimation of nonlinear parameters", SIAM J. Appl. Math., 11(2), 431-441. https://doi.org/10.1137/0111030
- Ozbolt, J., Periskic, G., Reinhardt, H.F. and Eligehausen, R. (2008), "Numerical analysis of spalling of concrete cover at high temperature", Comput. Concrete, 5(4), 279-293. https://doi.org/10.12989/cac.2008.5.4.279
- Ozbolt, J., Kozar, I., Eligehausen, R. and Periskic, G. (2005), "Three-dimensional FE analysis of headed stud anchors exposed to fire", Comput. Concrete, 2(4), 249-266. https://doi.org/10.12989/cac.2005.2.4.249
- Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253
- Roth, J.M., Slawson, T.R. and Flores, O.G. (2010), "Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: An experimental, micromechanical and numerical study", Comput. Concrete, 7(2), 169-190. https://doi.org/10.12989/cac.2010.7.2.169
- Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers", Comput. Concrete, 7(2), 191-202. https://doi.org/10.12989/cac.2010.7.2.191
Cited by
- Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing vol.110, pp.48, 2013, https://doi.org/10.1073/pnas.1318739110
- Strain-rate-dependent microplane model for high-rate comminution of concrete under impact based on kinetic energy release theory vol.471, pp.2182, 2015, https://doi.org/10.1098/rspa.2015.0535
- Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy vol.64, 2014, https://doi.org/10.1016/j.jmps.2013.11.008
- Viscous energy dissipation of kinetic energy of particles comminuted by high-rate shearing in projectile penetration, with potential ramification to gas shale vol.193, pp.1, 2015, https://doi.org/10.1007/s10704-015-0019-0
- Impact comminution of solids due to local kinetic energy of high shear strain rate: II–Microplane model and verification vol.64, 2014, https://doi.org/10.1016/j.jmps.2013.11.009
- Microplane constitutive model M4L for concrete. I: Theory vol.128, 2013, https://doi.org/10.1016/j.compstruc.2013.06.008
- Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models vol.83, pp.11, 2016, https://doi.org/10.1115/1.4034319
- Mechanical Properties of Concrete with Al2O3 Hollow Sphere Added under Impact Loading vol.30, pp.6, 2018, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002271
- Impact Comminution of Solids Due to Progressive Crack Growth Driven by Kinetic Energy of High-Rate Shear vol.82, pp.3, 2012, https://doi.org/10.1115/1.4029636