References
- Berthelot, J. and Rovert, J. (1987), "Modeling concrete damage by acous. emission", J. Acous. Emission, 6, 43-60.
- Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
- Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete-filled steel RHS columns", J. Constr. Steel Res., 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7
- Hoxha, D. and Homand, F. (2000), "Microstructural approach in damage modelling", Mech. Mater., 32(6), 377-387. https://doi.org/10.1016/S0167-6636(00)00006-5
- Hu, H.T., Huang, C.H., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng.-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
- Huang, Y.S., Long, Y.L. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., 8(2), 115-128. https://doi.org/10.12989/scs.2008.8.2.115
- Liang, Q.Q. (2011), "High strength circular concrete-filled steel tubular slender beam-columns, Part I: Numerical analysis", J. Constr. Steel Res., 67(2), 164-171. https://doi.org/10.1016/j.jcsr.2010.08.006
- Liang, Z.Z., Tang, C.A., Zhang, Y.B., Ma, T.H. and Zhang, Y.F. (2006), "3D numerical simulation of failure process of rock (in Chinese)", Chinese J. Rock Mech. Eng., 25(5), 931-936.
- Liu, D., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Constr. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8
- Meglis, I.L., Chow, T.M. and Young, R.P. (1995), "Progressive microcrack development in test on Lac du Bonnet: I. Emission Source location and velocity measurements", Int. J. Rock Mech. Min., 32(8), 741-750. https://doi.org/10.1016/0148-9062(95)00014-8
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
- Schneider, S.P. (1998), "Axially loaded concrete-filled tubes", J. Struct. Eng.-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
- Starossek, U., Falah, N. and Lohning, T. (2010), "Numerical analyses of the force transfer in concrete-filled steel tube columns", Struct. Eng. Mech., 35(2), 241-256. https://doi.org/10.12989/sem.2010.35.2.241
- Tang, C.A. (1997), "Numerical simulation on progressive failure leading to collapse and associated seismicity", Int. J. Rock Mech. Min., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3
- Uy, B. (1998), "Local and post-local buckling of concrete-filled steel welded box columns", J. Constr. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8
- Uy, B. (2001), "Strength of short concrete-filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
- Yang, Y.F. and Han, L.H. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257-284. https://doi.org/10.12989/scs.2006.6.3.257
- Zhang, S. and Wang, Y. (2004), "Failure modes of short columns of high-strength concrete-filled steel tubes (in Chinese)", J. Civil Eng., 37(9), 1-10.
- Zhu, W.C. and Tang, C.A. (2002), "Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model", Constr. Build. Mater., 16(8), 453-463. https://doi.org/10.1016/S0950-0618(02)00096-X
- Zhu, W.C. and Tang, C.A. (2004), "Micromechanical model for simulating the fracture process of rock", Rock Mech. Rock Eng., 37(1), 25-56. https://doi.org/10.1007/s00603-003-0014-z
- Zhu, W.C., Teng, J.G. and Tang, C.A. (2004), "Mesomechanical model for concrete-part I: model development", Mag. Concrete Res., 56(6), 313-330. https://doi.org/10.1680/macr.2004.56.6.313
Cited by
- Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.527
- The structural performance of axially loaded CFST columns under various loading conditions vol.13, pp.5, 2012, https://doi.org/10.12989/scs.2012.13.5.451
- GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading vol.25, pp.1, 2012, https://doi.org/10.12989/cac.2020.25.1.001
- Effect of axial loading conditions and confinement type on concrete-steel composite behavior vol.25, pp.2, 2012, https://doi.org/10.12989/cac.2020.25.2.095
- Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber vol.26, pp.6, 2012, https://doi.org/10.12989/cac.2020.26.6.467