DOI QR코드

DOI QR Code

Optimization of particle packing by analytical and computer simulation approaches

  • He, Huan (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Stroeven, Piet (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Stroeven, Martijn (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Sluys, Lambertus Johannes (Faculty of Civil Engineering and Geosciences, Delft University of Technology)
  • Received : 2010.10.14
  • Accepted : 2011.04.13
  • Published : 2012.02.28

Abstract

Optimum packing of aggregate is an important aspect of mixture design, since porosity may be reduced and strength improved. It may also cause a reduction in paste content and is thus of economic relevance too. Several mathematic packing models have been developed in the literature for optimization of mixture design. However in this study, numerical simulation will be used as the main tool for this purpose. A basic, simple theoretical model is used for approximate assessment of mixture optimization. Calculation and simulation will start from a bimodal mixture that is based on the mono-sized packing experiences. Tri-modal and multi-sized particle packing will then be discussed to find the optimum mixture. This study will demonstrate that computer simulation is a good alternative for mixture design and optimization when appropriate particle shapes are selected. Although primarily focusing on aggregate, optimization of blends of Portland cement and mineral admixtures could basically be approached in a similar way.

Keywords

References

  1. Andreasen, A.H.M. and Andersen, J. (1930), "Ueber die beziehung zwischen kornabstufung und zwischenraum in produkten aus losen körnern (mit einigen experimenten) ", Kolloid-Zeits., 50, 217-228. https://doi.org/10.1007/BF01422986
  2. Aim, R.B. and Goff, P.L. (1968), "Effet de paroi dans les empilements desordonnes de spheres et application a la porosite de mélanges binaires", Powder Technol., 1(5), 281-290. https://doi.org/10.1016/0032-5910(68)80006-3
  3. Bentz, D.P. and Conway, J.T. (2001), "Computer modeling of the replacement of "coarse" cement particles by inert fillers in low w/c ratio concretes hydration and strength", Cement Concrete Res., 31(3), 503-506. https://doi.org/10.1016/S0008-8846(01)00456-2
  4. Bernal, J.D. and Mason, J. (1960), "Packing of spheres: co-ordination of randomly packed spheres", Nature 188(4754), 910-911. https://doi.org/10.1038/188910a0
  5. Bonavetti, V., Donza, H., Meneìndez, G., Cabrera, O. and Irassar, E.F. (2003), "Limestone filler cement in low w/c concrete: a rational use of energy", Cement Concrete Res., 33(6), 865-871. https://doi.org/10.1016/S0008-8846(02)01087-6
  6. Brouwers, H.J.H. and Radix, H.J. (2005), Self-compacting concrete: the role of the particle size distribution. In: Z.Yu, C. Shi, K.H. Khayat and Y.Xie (eds.), First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, Bagneux, Rilem Publication S.A.R.L.: 109-118.
  7. Bui, D.D., Hu, J. and Stroeven, P. (2005), "Particle size effect on the strength of rice husk ash blended gapgraded Portland cement concrete", Cement Concrete Compos., 27(3), 357-366. https://doi.org/10.1016/j.cemconcomp.2004.05.002
  8. Coelho, D., Thovert, J.F. and Adler, P.M. (1997), "Geometrical and transport properties of random packings of spheres and spherical particles", Phys. Rev. E, 55(2) 1959-1978. https://doi.org/10.1103/PhysRevE.55.1959
  9. Cooper, D.W. (1988), "Random-sequential-packing simulations in three dimensions for spheres", Phys. Rev. A, 38(1), 522-524. https://doi.org/10.1103/PhysRevA.38.522
  10. Craeye, B., De Schutter, G., Desmet, B., Vantomme, J., Heirman, G., Vandewalle, L., Cizer, O., Aggoun, S. and Kadri, E.H. (2010), "Effect of mineral filler type on autogenous shrinkage of self-compacting concrete", Cement Concrete Res. 40(6), 908-913. https://doi.org/10.1016/j.cemconres.2010.01.014
  11. de Larrard, F. (1989), "Ultrafine particles for the making of very high strength concretes", Cement Concrete Res., 19(2), 161-172. https://doi.org/10.1016/0008-8846(89)90079-3
  12. de Larrard, F. (1999), Concrete Mixture Proportioning: A Scientific Approach, London: E & FN Spon.
  13. Dewar, J.D. (1986), "Ready-mixed concrete mix design", P. I. Civil. Eng-Munic, 3(1), 35-43.
  14. Evans, K.E. and Ferrar, M.D. (1989), "Packing of thick fibres", J. Phys. D Appl. Phys., 22(2), 354-360. https://doi.org/10.1088/0022-3727/22/2/020
  15. Fuller, W.B. and Thompson, S.E. (1907), "The laws of proportioning concrete", J. Transp. Eng. - ASCE., 59, 67- 143.
  16. Furnas, C.C. (1929), "Flow of gasses through beds of broken solids", Bureau of Mines Bulletin, 307.
  17. German, R.M. (1989), Particle Packing Characteristics, Princeton: Metal Powder Industries Federation.
  18. Goldman, A. and Bentur, A. (1993), "The influence of microfillers on enhancement of concrete strength", Cement Concrete Res., 23(4), 962-972. https://doi.org/10.1016/0008-8846(93)90050-J
  19. He, H. (2010), Computational Modelling of Particle Packing in Concrete, PhD Thesis, Delft University of Technology, Ipskamp Drukkers, Enschede, NL.
  20. He, H., Guo, Z., Stroeven, P., Stroeven, M. and Sluys, L.J. (2009), "Characterization of the packing of aggregate in concrete by a discrete element approach", Mater. Charact., 60(10), 1082-1087. https://doi.org/10.1016/j.matchar.2009.02.012
  21. Ingram, J. and Daugherty, K. (1992), Limestone additions to Portland cement: uptake, chemistry and effects, in Proc. of 9th Int. Congress. Chem. Cement, New Delhi, India II: 181-186.
  22. Jones, M.R., Zheng, L. and Newlands, M.D. (2002), "Comparison of particle packing models for proportioning concrete constituents for minimum voids ratio", Mater. Struct., 35(5), 301-309. https://doi.org/10.1007/BF02482136
  23. Lawrence, P., Cyr, M. and Ringot, E. (2003), "Mineral admixtures in mortars: effect of inert materials on shortterm hydration", Cement Concrete Res., 33(12), 1939-1947. https://doi.org/10.1016/S0008-8846(03)00183-2
  24. Rahhal, V. and Talero, R. (2005), "Early hydration of portland cement with crystalline mineral additions", Cem. Concr. Res., 35(7), 1285-1291. https://doi.org/10.1016/j.cemconres.2004.12.001
  25. Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee, D.Y. and Kennedy, T.W. (1996), Hot Mix Asphalt Materials, Mixture Design, and Construction. National Asphalt Pavement Association Education Foundation, Lanham, MD.
  26. Sherwood, J.D. (1997), "Packing of spheroids in three-dimensional space by random sequential addition", J. Phys. A - Math. Gen., 30, 839-843. https://doi.org/10.1088/0305-4470/30/24/004
  27. Shilstone, Sr., J.M. (1990), "Concrete mixture optimization", Concrete Int., 12(6), 33-39.
  28. Shilstone, Sr., J.M. and Shilstone, Jr., J.M. (1989), "Concrete mixtures and construction needs", Concrete Int., 11(12), 53-57.
  29. Stroeven, P., Hu, J. and Stroeven, M. (2009), "On the usefulness of discrete element computer modelling of particle packing for material characterization in concrete technology", Comput. Concrete, 6(2), 133-153. https://doi.org/10.12989/cac.2009.6.2.133
  30. Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  31. Toufar, W., Born, M. and Klose, E. (1976), "Contribution of optimisation of components of different density in polydispersed particles systems", Freiberger Booklet A, 558, 29-44.
  32. Williams, S.R. and Philipse, A.P. (2003), "Random packings of spheres and spherocylinders simulated by mechanical contraction", Phys. Rev. E, 67, 1-9.
  33. Wittmann, F.H., Roelfstra, P.E. and Sadouki, H. (1984), "Simulation and analysis of composite structures", Mat. Sci. Eng., 68(2) 239-248.

Cited by

  1. A Statistical Approach to Optimizing Concrete Mixture Design vol.2014, 2014, https://doi.org/10.1155/2014/561539
  2. Prediction of Particle Packing Density of Alternative Fine Aggregates by Artificial Neural Network Applications vol.101, pp.1, 2012, https://doi.org/10.1007/s40030-019-00412-9
  3. Fractal equations to represent optimized grain size distributions used for concrete mix design vol.26, pp.6, 2012, https://doi.org/10.12989/cac.2020.26.6.505