DOI QR코드

DOI QR Code

Determination of double-K fracture parameters of concrete using split-tension cube test

  • Kumar, Shailendra (Department of Civil Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya (A Central University)) ;
  • Pandey, S.R. (Department of Civil Engineering, National Institute of Technology)
  • 투고 : 2010.08.06
  • 심사 : 2011.04.06
  • 발행 : 2012.02.28

초록

This paper presents development of double-K fracture model for the split-tension cube specimen for determining the unstable fracture toughness and initial cracking toughness of concrete. There are some advantages of using of split-tension cube test like compactness and lightness over the existing specimen geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen. The cohesive toughness of the material is determined using weight function having four terms for the split-tension cube specimen. Some empirical relations are also suggested for determining geometrical factors in order to calculate stress intensity factor and crack mouth opening displacement for the same specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is investigated. The input data required for determining double-K fracture parameters for both the specimen geometries are obtained using well known version of the Fictitious Crack Model.

키워드

참고문헌

  1. ASTM International Standard E399-06 (2006), "Standard test method for linear-elastic method plane-strain fracture toughness KIC of metallic materials", Copyright ASTM International, West Conshohocken, U.S., 1-32.
  2. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
  3. Bazant, Z.P., Kazemi, M.T., Hasegawa, T. and Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Mater. J., 88(3), 325-332.
  4. Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
  5. Brühwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test: a method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35, 117-125. https://doi.org/10.1016/0013-7944(90)90189-N
  6. Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Z. Angew. Math. Mech., 50, 529-546.
  7. Carneiro, F.L. and Barcellos, A. (1949), "Re Asistance a la Traction des Be Atons", Int. Assoc. Test Res. Lab. Mater. Struct. RILEM Bull, 13, 98-125.
  8. Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solid., 37(5), 567- 582. https://doi.org/10.1016/0022-5096(89)90029-X
  9. Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in Mode I", Eng. Fract. Mech., 40, 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
  10. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  11. Ince, R. (2010), "Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes", Eng. Fract. Mech., 77, 2233-2250. https://doi.org/10.1016/j.engfracmech.2010.05.007
  12. Ince, R. and Arici, E. (2004), "Size effect in bearing strength of concrete cubes", Constr. Build. Mater., 18, 603- 609. https://doi.org/10.1016/j.conbuildmat.2004.04.002
  13. Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  14. Kadlecek, V. Sr., Modry, S. and Kadlecek, V. Jr. (2002), "Size effect of test specimens on tensile splitting strength of concrete: general relation", Mater. Struct., 35, 28-34. https://doi.org/10.1007/BF02482087
  15. Karihaloo, B.L. (1986), "Fracture toughness of plain concrete from compression splitting tests", Int. J. Cement Compos. Lightweight Concrete, 8(4), 251-259. https://doi.org/10.1016/0262-5075(86)90052-7
  16. Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: Mode I fracture toughness. Fracture Mechanics test methods for concrete", Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
  17. Kumar, S. and Barai, S.V. (2008a), "Influence of specimen geometry on determination of double-K fracture parameters of concrete: a comparative study", Int. J. Fracture, 149, 47-66. https://doi.org/10.1007/s10704-008-9227-1
  18. Kumar, S. and Barai, S.V. (2008b), "Cohesive crack model for the study of nonlinear fracture behaviour of concrete", J. Inst. Eng. (India), CV 89, 7-15.
  19. Kumar, S. and Barai, S.V. (2009a), "Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function", Eng. Fract. Mech., 76, 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
  20. Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015.
  21. Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. Mater. Struct., 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
  22. Kumar, S. (2010), "Behavoiur of fracture parameters for crack propagation in concrete", Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.
  23. MATLAB, Version 7, The MathWorks, Inc. Copyright, 1984-2004.
  24. Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
  25. Nilsson, S. (1961), "The tensile strength of concrete determined by splitting tests on cubes", RILEM Bull., 11(6), 63-67.
  26. Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
  27. Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157.
  28. Reinhardt, H.W., Cornelissen, H.A.W. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng. - ASCE, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
  29. Rice, J.R. (1972), "Some remarks on elastic crack-tip stress fields", Int. J. Solids Struct., 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
  30. RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290. https://doi.org/10.1007/BF02472918
  31. Rocco, C., Guinea, G.V., Planas, J. and Elices, M. (1999), "Size effect and boundary conditions in the Brazilian test: theoretical analysis", Mater. Struct., 32, 437-444. https://doi.org/10.1007/BF02482715
  32. Tada, H., Paris, P.C. and Irwin, G.R. (2000), Stress analysis of cracks handbook, 3rd Ed. New York, ASME Press.
  33. Tang, T., Bazant, Z.P., Yang, S. and Zollinger, D. (1996), "Variable-notch one-size test method for fracture energy and process zone length", Eng. Fract. Mech., 55, 383-404.
  34. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of elasticity, 3rd Ed. New York: McGraw Hill.
  35. Tschegg, E.K. (1986), "Equipment and appropriate specimen shapes for tests to measure fracture values", Patent application (AT 390328), Austria.
  36. Wittmann, F.H., Rokugo, K., Bruhwiller, E., Mihashi, H. and Simopnin, P. (1988), "Fracture energy and strain softening of concrete as determined by compact tension specimens", Mater. Struct., 21(1), 21-32. https://doi.org/10.1007/BF02472525
  37. Wu, Z., Jakubczak, H., Glinka, G., Molski, K. and Nilsson, L. (2003), "Determination of stress intensity factors for cracks in complex stress fields", Arch. Mech. Eng., L(1), s41-s67.
  38. Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
  39. Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98, 111-149. https://doi.org/10.1023/A:1018668929989
  40. Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-177. https://doi.org/10.1023/A:1018740728458
  41. Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens", Int. J. Fract., 98, 179-193. https://doi.org/10.1023/A:1018788611620
  42. Xu, S. and Reinhardt, H.W. (2000), "A simplified method for determining double-K fracture parameters for three-point bending tests", Int. J. Fracture, 104, 181-209. https://doi.org/10.1023/A:1007676716549
  43. Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Fract. Mech., 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
  44. Yang, S., Tang, T., Zollinger, D.G. and Gurjar, A. (1997), "Splitting tension tests to determine concrete fracture parameters by peak-load method", Adv. Cement Based Mater, 5, 18-28. https://doi.org/10.1016/S1065-7355(97)90011-0

피인용 문헌

  1. Determination of double-K fracture parameters using semi-circular bend test specimens vol.152, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.006
  2. Stochastic fracture-mechanical characteristics of concrete based on experiments and inverse analysis vol.73, 2014, https://doi.org/10.1016/j.conbuildmat.2014.09.087
  3. Modeling of fracture parameters for crack propagation in recycled aggregate concrete vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.101
  4. Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens vol.96, 2012, https://doi.org/10.1016/j.engfracmech.2012.08.024
  5. The Effect of Size on the Splitting Strength of Cubic Concrete Members vol.51, pp.2, 2015, https://doi.org/10.1111/str.12127
  6. Effects of loading rates on concrete double- K fracture parameters vol.149, 2015, https://doi.org/10.1016/j.engfracmech.2015.09.027
  7. Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.527