References
- ASTM International Standard E399-06 (2006), "Standard test method for linear-elastic method plane-strain fracture toughness KIC of metallic materials", Copyright ASTM International, West Conshohocken, U.S., 1-32.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
- Bazant, Z.P., Kazemi, M.T., Hasegawa, T. and Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Mater. J., 88(3), 325-332.
- Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
- Brühwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test: a method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35, 117-125. https://doi.org/10.1016/0013-7944(90)90189-N
- Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Z. Angew. Math. Mech., 50, 529-546.
- Carneiro, F.L. and Barcellos, A. (1949), "Re Asistance a la Traction des Be Atons", Int. Assoc. Test Res. Lab. Mater. Struct. RILEM Bull, 13, 98-125.
- Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solid., 37(5), 567- 582. https://doi.org/10.1016/0022-5096(89)90029-X
- Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in Mode I", Eng. Fract. Mech., 40, 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Ince, R. (2010), "Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes", Eng. Fract. Mech., 77, 2233-2250. https://doi.org/10.1016/j.engfracmech.2010.05.007
- Ince, R. and Arici, E. (2004), "Size effect in bearing strength of concrete cubes", Constr. Build. Mater., 18, 603- 609. https://doi.org/10.1016/j.conbuildmat.2004.04.002
- Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Kadlecek, V. Sr., Modry, S. and Kadlecek, V. Jr. (2002), "Size effect of test specimens on tensile splitting strength of concrete: general relation", Mater. Struct., 35, 28-34. https://doi.org/10.1007/BF02482087
- Karihaloo, B.L. (1986), "Fracture toughness of plain concrete from compression splitting tests", Int. J. Cement Compos. Lightweight Concrete, 8(4), 251-259. https://doi.org/10.1016/0262-5075(86)90052-7
- Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: Mode I fracture toughness. Fracture Mechanics test methods for concrete", Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
- Kumar, S. and Barai, S.V. (2008a), "Influence of specimen geometry on determination of double-K fracture parameters of concrete: a comparative study", Int. J. Fracture, 149, 47-66. https://doi.org/10.1007/s10704-008-9227-1
- Kumar, S. and Barai, S.V. (2008b), "Cohesive crack model for the study of nonlinear fracture behaviour of concrete", J. Inst. Eng. (India), CV 89, 7-15.
- Kumar, S. and Barai, S.V. (2009a), "Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function", Eng. Fract. Mech., 76, 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
- Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015.
- Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. Mater. Struct., 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
- Kumar, S. (2010), "Behavoiur of fracture parameters for crack propagation in concrete", Ph.D. Thesis submitted to Indian Institute of Technology, Kharagpur, India.
- MATLAB, Version 7, The MathWorks, Inc. Copyright, 1984-2004.
- Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
- Nilsson, S. (1961), "The tensile strength of concrete determined by splitting tests on cubes", RILEM Bull., 11(6), 63-67.
- Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
- Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157.
- Reinhardt, H.W., Cornelissen, H.A.W. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng. - ASCE, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
- Rice, J.R. (1972), "Some remarks on elastic crack-tip stress fields", Int. J. Solids Struct., 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
- RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290. https://doi.org/10.1007/BF02472918
- Rocco, C., Guinea, G.V., Planas, J. and Elices, M. (1999), "Size effect and boundary conditions in the Brazilian test: theoretical analysis", Mater. Struct., 32, 437-444. https://doi.org/10.1007/BF02482715
- Tada, H., Paris, P.C. and Irwin, G.R. (2000), Stress analysis of cracks handbook, 3rd Ed. New York, ASME Press.
- Tang, T., Bazant, Z.P., Yang, S. and Zollinger, D. (1996), "Variable-notch one-size test method for fracture energy and process zone length", Eng. Fract. Mech., 55, 383-404.
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of elasticity, 3rd Ed. New York: McGraw Hill.
- Tschegg, E.K. (1986), "Equipment and appropriate specimen shapes for tests to measure fracture values", Patent application (AT 390328), Austria.
- Wittmann, F.H., Rokugo, K., Bruhwiller, E., Mihashi, H. and Simopnin, P. (1988), "Fracture energy and strain softening of concrete as determined by compact tension specimens", Mater. Struct., 21(1), 21-32. https://doi.org/10.1007/BF02472525
- Wu, Z., Jakubczak, H., Glinka, G., Molski, K. and Nilsson, L. (2003), "Determination of stress intensity factors for cracks in complex stress fields", Arch. Mech. Eng., L(1), s41-s67.
- Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
- Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98, 111-149. https://doi.org/10.1023/A:1018668929989
- Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-177. https://doi.org/10.1023/A:1018740728458
- Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens", Int. J. Fract., 98, 179-193. https://doi.org/10.1023/A:1018788611620
- Xu, S. and Reinhardt, H.W. (2000), "A simplified method for determining double-K fracture parameters for three-point bending tests", Int. J. Fracture, 104, 181-209. https://doi.org/10.1023/A:1007676716549
- Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Fract. Mech., 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
- Yang, S., Tang, T., Zollinger, D.G. and Gurjar, A. (1997), "Splitting tension tests to determine concrete fracture parameters by peak-load method", Adv. Cement Based Mater, 5, 18-28. https://doi.org/10.1016/S1065-7355(97)90011-0
Cited by
- Determination of double-K fracture parameters using semi-circular bend test specimens vol.152, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.006
- Stochastic fracture-mechanical characteristics of concrete based on experiments and inverse analysis vol.73, 2014, https://doi.org/10.1016/j.conbuildmat.2014.09.087
- Modeling of fracture parameters for crack propagation in recycled aggregate concrete vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.101
- Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens vol.96, 2012, https://doi.org/10.1016/j.engfracmech.2012.08.024
- The Effect of Size on the Splitting Strength of Cubic Concrete Members vol.51, pp.2, 2015, https://doi.org/10.1111/str.12127
- Effects of loading rates on concrete double- K fracture parameters vol.149, 2015, https://doi.org/10.1016/j.engfracmech.2015.09.027
- Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.527