References
- Bazant, Z.P. and Pijauder-Cabot, G. (1989), "Measurement of characteristic length of non-local continuum", J. Eng. Mech. - ASCE, 115(4), 755-767. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(755)
- Bazant, Z. and Planas, J. (1998), Fracture and size effect in concrete and other quasi-brittle materials, CRC Press LLC, Boca Raton.
- Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: survey of progress", J. Eng. Mech. - ASCE, 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
-
Bazant, Z.P. and Novak, D. (2003), "Stochastic models for deformation and failure of quasibrittle structures: recent advances and new directions", Computational Modelling of Concrete Structures EURO-C (eds.: N. Bicani
$\ae$ , R. de Borst, H. Mang and G. Meschke), 583-598. - Bobinski, J. and Tejchman, J. (2004), "Numerical simulations of localization of deformation in quasi-brittle materials with non-local softening plasticity", Comput. Concrete, 1(4), 433-455. https://doi.org/10.12989/cac.2004.1.4.433
- Bobinki, J. and Tejchman, J. (2010), Continuous and discontinuous modeling of cracks in concrete elements, Modelling of Concrete Structures (eds. N. Bicanic, R. de Borst, H. Mang, G. Meschke), Taylor and Francis Group, London, 263-270.
- Drugan, W.J and Willis, J.R. (1996), "A micromechanics-based nonlocal constitutive equations and estimates of representative volume element size for elastic composites", J. Mech. Phys. Solids, 44(4), 497-524. https://doi.org/10.1016/0022-5096(96)00007-5
- Evesque, P. (2000), "Fluctuations, correlations and representative elementary volume (REV) in granular materials", Powders Grains, 11, 6-17.
- Gitman, I.M., Askes, H. and Sluys, L.J. (2007), "Representative volume: existence and size determination", Eng. Fract. Mech., 74(16), 2518-2534. https://doi.org/10.1016/j.engfracmech.2006.12.021
- Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modelling of quasi-brittle material", Eur. J. Mech. A - Solid, 27(3), 302-327. https://doi.org/10.1016/j.euromechsol.2007.10.004
- He, H. (2010), "Computational modeling of particle packing in concrete", PhD thesis, Delft University of Technology.
- Hill, R. (1963), "Elastic properties of reinforced solids: some theoretical principles", J. Mech. Phys. Solids, 11(5), 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
- Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Meth. Eng., 63(1), 77-102. https://doi.org/10.1002/nme.1262
- Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003), "Determination of the size of the representative volume element for random composites: statistical and numerical approach", Int. J. Solids Struct., 40, 3647-3679. https://doi.org/10.1016/S0020-7683(03)00143-4
- Kouznetsova, V.G., Geers, M.G.D. and Brekelmans, W.A.M. (2004), "Size of representative volume element in a second-order computational homogenization framework", Int. J. Multiscale Comput. Eng., 2(4), 575-598. https://doi.org/10.1615/IntJMultCompEng.v2.i4.50
- Katchanov, L.M. (1986), Introduction to continuum damage mechanics, Dordrecht: Martimus Publishers.
- Kozicki, J. and Tejchman, J. (2008), "Modeling of fracture processes in concrete using a novel lattice model", Granular Matter, 10(5), 377-288. https://doi.org/10.1007/s10035-008-0104-4
- Le Bellego, C., Dube, J.F., Pijauder-Cabot, G. and Gerard, B. (2003), "Calibration of nonlocal damage model from size effect tests", Eur. J. Mech. A - Solid, 22(1), 33-46. https://doi.org/10.1016/S0997-7538(02)01255-X
- Lilliu, G. and van Mier, J.G.M. (2003), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70(7-8), 927-941. https://doi.org/10.1016/S0013-7944(02)00158-3
- Marzec, I., Bobinski, J. and Tejchman, J. (2007), "Simulations of crack spacing in reinforced concrete beams using elastic-plastic and damage with non-local softening", Comput. Concrete, 4(4), 377-403. https://doi.org/10.12989/cac.2007.4.5.377
- Nguyen, V.P., Lloberas Valls, O., Stroeven, M. and Sluys, L.J. (2010), "On the existence of representative volumes for softening quasi-brittle materials", Comput. Method. Appl. M., 199, 3028-3038. https://doi.org/10.1016/j.cma.2010.06.018
- Nielsen, A.U., Montiero, P.J.M. and Gjorv, O.E. (1995), "Estimation of the elastic moduli of lightweight aggregate", Cement Concrete Res., 25(2), 276-280. https://doi.org/10.1016/0008-8846(95)00009-7
- Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998), "Gradient-enhanced damage modelling of concrete fracture", Mech. Cohesive-Frictional Mat., 3(4), 323-342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
- Pijauder-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech. - ASCE, 113(10), 1512- 1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Sengul, O., Tasdemir, C. and Tasdemir, M.A. (2002), "Influence of aggregate type on mechanical behaviour of normal- and high-strength concretes", ACI Mater. J., 99(6), 528-533.
- Simo, J.C. and Ju, J.W. (1987), "Strain- and stress-based continuum damage models - I. Formulation", Int. J. Solids Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
- Simone, A. and Sluys, L. (2004), "The use of displacement discontinuities in a rate-dependent medium", Comput. Method. Appl. M., 193(27-29), 3015-3033. https://doi.org/10.1016/j.cma.2003.08.006
- Skarzynski, L . and Tejchman, J. (2009), "Mesoscopic modelling of strain localization in concrete", Arch. Civil Eng. LV, 4.
- Skarzynski, L ., Syroka, E. and Tejchman, J. (2009), "Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams", Strain, doi: 10.1111/j.1475- 1305.2008.00605.x.
- Skarzynski, L . and Tejchman, J. (2010), "Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending", Eur. J. Mech. A - Solid, 29, 746-760. https://doi.org/10.1016/j.euromechsol.2010.02.008
- van Mier, J.G.M. (2000), "Microstructural effects on fracture scaling in concrete, rock and ice", IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics (eds.: J.P. Dempsey and H.H. Shen), Kluwer Academic Publishers, 171-182.
- Verhoosel, C.V., Remmers, J.J.C. and Gutierrez, M.A. (2010a), "A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics", Int. J. Numer. Meth. Eng., 82(8), 966-994.
- Verhoosel, C.V., Remmers, J.J.C., Gutieerrez, M.A. and de Borst, R. (2010b), "Computational homogenization for adhesive and cohesive failure in quasi-brittle solids", Int. J. Numer. Meth. Eng., 83, 1155-1179. https://doi.org/10.1002/nme.2854
Cited by
- A computationally efficient model for the cyclic behavior of reinforced concrete structural members vol.141, 2017, https://doi.org/10.1016/j.engstruct.2017.03.012
- Modeling the Damage Characteristics of Concrete Subjected to Cyclic Loadings vol.53, pp.5, 2017, https://doi.org/10.1007/s11029-017-9694-4
- Computational and Simulation Analysis of Pull-Out Fiber Reinforced Concrete vol.2014, 2014, https://doi.org/10.1155/2014/576052
- Representative volume element estimation for desorption isotherm of concrete with sliced samples vol.76, 2015, https://doi.org/10.1016/j.cemconres.2015.05.010
- A bi-dissipative damage model for concrete vol.8, pp.1, 2015, https://doi.org/10.1590/S1983-41952015000100006
- A damage model formulation: unilateral effect and RC structures analysis vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.709
- Determination of the size of the Representative Volume Element (RVE) for the simulation of heterogeneous polymers at finite strains vol.119, 2016, https://doi.org/10.1016/j.finel.2016.05.004
- Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores vol.75, 2015, https://doi.org/10.1016/j.conbuildmat.2014.09.069