DOI QR코드

DOI QR Code

A numerical study on the damage of projectile impact on concrete targets

  • Lu, Gang (Shaw Stone & Webster Nuclear) ;
  • Li, Xibing (School of Resources and Safety Engineering, Central South University) ;
  • Wang, Kejin (National Concrete Pavement Center, Iowa State University)
  • Received : 2010.04.07
  • Accepted : 2011.04.08
  • Published : 2012.01.25

Abstract

This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.

Keywords

References

  1. Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rate", Mater. Struct., 24, 425-450. https://doi.org/10.1007/BF02472016
  2. Bindiganavile, V., Banthia, N. and Aarup, B. (2002), "Impact response of ultra-high strength-reinforced cement composite", ACI Mater. J., 99(6), 543-548.
  3. Cao, J. and Chung, D.D.L. (2002), "Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement", Cement Concrete Res., 32, 817-819. https://doi.org/10.1016/S0008-8846(01)00753-0
  4. Clifton, J.R. (1982), Penetration resistance of concrete-a review, National Bureau of Standards Special Publication, Washington D.C., 480-485.
  5. Collins, A., Chapman, D. and Proud, W. (2007), "Shock compression of condensed matter", AIP Conference Proceedings, 955, 497-500.
  6. Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comp. Struct., 86, 145-163. https://doi.org/10.1016/j.compstruc.2007.05.014
  7. Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates", Comp. Struct., 86, 164-180. https://doi.org/10.1016/j.compstruc.2007.05.015
  8. Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006
  9. Dancygier, A.N. and Yankelevsky, D.Z. (1996), "High strength concrete response to hard projectile impact", Int. J. Impact Eng., 18(6), 583-599. https://doi.org/10.1016/0734-743X(95)00063-G
  10. Dancygier, A.N. and Yankelevsky, D.Z. (2002), "Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers", Struct. Eng. Mech., 13, 171-186. https://doi.org/10.12989/sem.2002.13.2.171
  11. Degen, P.P. (1980), "Perforation of reinforced concrete slab by rigid missiles", J. Struct. Div. - ASCE, 106(7), 1623-1642.
  12. Forrestal, M.J. and Luk, V.K. (1988), "Dynamic spherical cavity expansion in a compressible elastic plastic solid", J. Appl. Mech., 55, 275-279. https://doi.org/10.1115/1.3173672
  13. Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478. https://doi.org/10.1007/s004190000079
  14. Grady, D.E. and Kipp, M.E. (1980), "Continuum modeling of explosive fracture in oil shale", Int. J. Rock Min. Sci., 17, 147-157. https://doi.org/10.1016/0148-9062(80)91361-3
  15. Hanchak, S.J., Forrestal, M.J., Young, E.R. and Ehrgott, J.Q. (1992), "Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths", Int. J. Impact Eng., 12(1), 1-7. https://doi.org/10.1016/0734-743X(92)90282-X
  16. Holmquist, T.J., Johnson, G.R. and Cook, W.H. (1993), "A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures", Proc. 14th Int. Sym. Ball, Quebec, Canada, 591-600.
  17. Islam, M.J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123. https://doi.org/10.12989/cac.2011.8.1.111
  18. van Mier, J.G.M. (1997), Fracture processes of concrete, CRC Press, ISBN:0-8493-9123-7, 284-285.
  19. Lemaitre, J. (1992), A course on damage mechanics, Springer-Verlag Press, ISBN:3-540-53609-4.
  20. Leppänen, J. (2006), "Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension", Int. J. Impact Eng., 32, 1828-1841. https://doi.org/10.1016/j.ijimpeng.2005.06.005
  21. Li, X.B. and Gu, D.S. (1994), Rock impact dynamics, Central South University of Technology Press, China, ISBN:7-81020-670-2/TD.034.
  22. Lok, T.S., Zhao, P.J. and Lu, G. (2003), "Using the split Hopkinson pressure bar to investigate the dynamic behaviour of SFRC", Mag. Concrete Res., 55(2), 183-191. https://doi.org/10.1680/macr.2003.55.2.183
  23. LS-DYNA Keyword User's Manual Ver. 950 (1999), Livermore software technology corporation, LSCT.
  24. Luk, V.K. and Forrestal, M.J. (1987), "Penetration into semi-infinite reinforced concrete target with spherical and ogival nose projectiles", Int. J. Impact Eng., 6(4), 291-301. https://doi.org/10.1016/0734-743X(87)90096-0
  25. Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95(6), 735-739.
  26. Mehta, P.K. and Monteriro P.J.M. (2006), Concrete microstructure, properties, and materials, McGraw-Hill, New York, 612-627.
  27. O'Neil, E.F., Neeley, B.D. and Cargile, J.D. (1999), "Tensile properties of very-high-strength concrete for penetration-resistant structures", Shock. Vib., 6(5), 237-245. https://doi.org/10.1155/1999/415360
  28. Ou, Z., Duan, Z. and Huang, F. (2010) "Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials", Int. J. Impact Eng., 37, 942-945. https://doi.org/10.1016/j.ijimpeng.2010.02.003
  29. Polanco-Loria, M., Hopperstad, O.S., Børvik, T. and Berstad, T. (2008), "Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model", Int. J. Impact Eng., 35, 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
  30. Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proc. 9th Int. Sym. Interaction of the Effects of Munitions with Structures, Berlin, Germany, 315-322.
  31. Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effects on concrete strength", ACI Mater. J., 93(3), 293-300.
  32. Schuler, H., Mayrhofer, C. and Thoma, K. (2006), "Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates", Int. J. Impact Eng., 32(10), 1635-1650. https://doi.org/10.1016/j.ijimpeng.2005.01.010
  33. Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, D.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock. Mech. Min. Sci. Geomech., 11, 303-317. https://doi.org/10.1016/0148-9062(74)91760-4
  34. Suaris, W. and Shah, S.P. (1984), "A rate sensitive damage theory for brittle solids", J. Eng. Mech. - ASCE, 110(6), 985-997. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:6(985)
  35. Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986), "Microcrack-induced damage accumulation in brittle rock under dynamic loading", Comput. Method. Appl. M., 55, 301-320. https://doi.org/10.1016/0045-7825(86)90057-5
  36. Zhao, P.J. (2003), "The split Hopkinson pressure bar for testing concrete and steel fibre reinforced concrete", Ph.D. Thesis, Nanyang Technological University, Singapore.
  37. Zhang, M.H., Sharif, M.S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre reinforcedconcrete", Mag. Concrete Res., 59(3), 199-210. https://doi.org/10.1680/macr.2007.59.3.199
  38. Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31(7), 825-841. https://doi.org/10.1016/j.ijimpeng.2004.04.009
  39. Zhou, X.Q., Kuznetsov, V.A., Hao, H. and Waschl, J. (2008), "Numerical prediction of concrete slab response to blast loading", Int. J. Impact Eng., 35(10), 1186-1200. https://doi.org/10.1016/j.ijimpeng.2008.01.004

Cited by

  1. Evaluation of early age mechanical properties of concrete in real structure vol.12, pp.1, 2013, https://doi.org/10.12989/cac.2013.12.1.053
  2. Modeling the Damage Characteristics of Concrete Subjected to Cyclic Loadings vol.53, pp.5, 2017, https://doi.org/10.1007/s11029-017-9694-4
  3. Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.917
  4. Material Modeling of Concrete for the Numerical Simulation of Steel Plate Reinforced Concrete Panels Subjected to Impacting Loading vol.139, pp.2, 2017, https://doi.org/10.1115/1.4035487
  5. A validated numerical model for predicting the in-plane seismic response of lightly reinforced, low-aspect ratio reinforced concrete shear walls vol.168, pp.None, 2012, https://doi.org/10.1016/j.engstruct.2018.04.025
  6. The influences of admixtures on the characteristics of pore structure of low-temperature concrete under different curing conditions vol.136, pp.None, 2012, https://doi.org/10.1051/e3sconf/201913603009
  7. Modifications of the HJC (Holmquist–Johnson–Cook) Model for an Improved Numerical Simulation of Roller Compacted Concrete (RCC) Structures Subjected to Impact Loadings vol.13, pp.6, 2012, https://doi.org/10.3390/ma13061361
  8. Safety assessment of an underground tunnel subjected to missile impact using numerical simulations vol.27, pp.1, 2021, https://doi.org/10.12989/cac.2021.27.1.001
  9. Ultra-high performance concrete targets against high velocity projectile impact - a-state-of-the-art review vol.160, pp.None, 2022, https://doi.org/10.1016/j.ijimpeng.2021.104080