References
- Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rate", Mater. Struct., 24, 425-450. https://doi.org/10.1007/BF02472016
- Bindiganavile, V., Banthia, N. and Aarup, B. (2002), "Impact response of ultra-high strength-reinforced cement composite", ACI Mater. J., 99(6), 543-548.
- Cao, J. and Chung, D.D.L. (2002), "Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement", Cement Concrete Res., 32, 817-819. https://doi.org/10.1016/S0008-8846(01)00753-0
- Clifton, J.R. (1982), Penetration resistance of concrete-a review, National Bureau of Standards Special Publication, Washington D.C., 480-485.
- Collins, A., Chapman, D. and Proud, W. (2007), "Shock compression of condensed matter", AIP Conference Proceedings, 955, 497-500.
- Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comp. Struct., 86, 145-163. https://doi.org/10.1016/j.compstruc.2007.05.014
- Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates", Comp. Struct., 86, 164-180. https://doi.org/10.1016/j.compstruc.2007.05.015
- Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006
- Dancygier, A.N. and Yankelevsky, D.Z. (1996), "High strength concrete response to hard projectile impact", Int. J. Impact Eng., 18(6), 583-599. https://doi.org/10.1016/0734-743X(95)00063-G
- Dancygier, A.N. and Yankelevsky, D.Z. (2002), "Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers", Struct. Eng. Mech., 13, 171-186. https://doi.org/10.12989/sem.2002.13.2.171
- Degen, P.P. (1980), "Perforation of reinforced concrete slab by rigid missiles", J. Struct. Div. - ASCE, 106(7), 1623-1642.
- Forrestal, M.J. and Luk, V.K. (1988), "Dynamic spherical cavity expansion in a compressible elastic plastic solid", J. Appl. Mech., 55, 275-279. https://doi.org/10.1115/1.3173672
- Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478. https://doi.org/10.1007/s004190000079
- Grady, D.E. and Kipp, M.E. (1980), "Continuum modeling of explosive fracture in oil shale", Int. J. Rock Min. Sci., 17, 147-157. https://doi.org/10.1016/0148-9062(80)91361-3
- Hanchak, S.J., Forrestal, M.J., Young, E.R. and Ehrgott, J.Q. (1992), "Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths", Int. J. Impact Eng., 12(1), 1-7. https://doi.org/10.1016/0734-743X(92)90282-X
- Holmquist, T.J., Johnson, G.R. and Cook, W.H. (1993), "A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures", Proc. 14th Int. Sym. Ball, Quebec, Canada, 591-600.
- Islam, M.J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123. https://doi.org/10.12989/cac.2011.8.1.111
- van Mier, J.G.M. (1997), Fracture processes of concrete, CRC Press, ISBN:0-8493-9123-7, 284-285.
- Lemaitre, J. (1992), A course on damage mechanics, Springer-Verlag Press, ISBN:3-540-53609-4.
- Leppänen, J. (2006), "Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension", Int. J. Impact Eng., 32, 1828-1841. https://doi.org/10.1016/j.ijimpeng.2005.06.005
- Li, X.B. and Gu, D.S. (1994), Rock impact dynamics, Central South University of Technology Press, China, ISBN:7-81020-670-2/TD.034.
- Lok, T.S., Zhao, P.J. and Lu, G. (2003), "Using the split Hopkinson pressure bar to investigate the dynamic behaviour of SFRC", Mag. Concrete Res., 55(2), 183-191. https://doi.org/10.1680/macr.2003.55.2.183
- LS-DYNA Keyword User's Manual Ver. 950 (1999), Livermore software technology corporation, LSCT.
- Luk, V.K. and Forrestal, M.J. (1987), "Penetration into semi-infinite reinforced concrete target with spherical and ogival nose projectiles", Int. J. Impact Eng., 6(4), 291-301. https://doi.org/10.1016/0734-743X(87)90096-0
- Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95(6), 735-739.
- Mehta, P.K. and Monteriro P.J.M. (2006), Concrete microstructure, properties, and materials, McGraw-Hill, New York, 612-627.
- O'Neil, E.F., Neeley, B.D. and Cargile, J.D. (1999), "Tensile properties of very-high-strength concrete for penetration-resistant structures", Shock. Vib., 6(5), 237-245. https://doi.org/10.1155/1999/415360
- Ou, Z., Duan, Z. and Huang, F. (2010) "Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials", Int. J. Impact Eng., 37, 942-945. https://doi.org/10.1016/j.ijimpeng.2010.02.003
- Polanco-Loria, M., Hopperstad, O.S., Børvik, T. and Berstad, T. (2008), "Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model", Int. J. Impact Eng., 35, 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
- Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proc. 9th Int. Sym. Interaction of the Effects of Munitions with Structures, Berlin, Germany, 315-322.
- Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effects on concrete strength", ACI Mater. J., 93(3), 293-300.
- Schuler, H., Mayrhofer, C. and Thoma, K. (2006), "Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates", Int. J. Impact Eng., 32(10), 1635-1650. https://doi.org/10.1016/j.ijimpeng.2005.01.010
- Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, D.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock. Mech. Min. Sci. Geomech., 11, 303-317. https://doi.org/10.1016/0148-9062(74)91760-4
- Suaris, W. and Shah, S.P. (1984), "A rate sensitive damage theory for brittle solids", J. Eng. Mech. - ASCE, 110(6), 985-997. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:6(985)
- Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986), "Microcrack-induced damage accumulation in brittle rock under dynamic loading", Comput. Method. Appl. M., 55, 301-320. https://doi.org/10.1016/0045-7825(86)90057-5
- Zhao, P.J. (2003), "The split Hopkinson pressure bar for testing concrete and steel fibre reinforced concrete", Ph.D. Thesis, Nanyang Technological University, Singapore.
- Zhang, M.H., Sharif, M.S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre reinforcedconcrete", Mag. Concrete Res., 59(3), 199-210. https://doi.org/10.1680/macr.2007.59.3.199
- Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31(7), 825-841. https://doi.org/10.1016/j.ijimpeng.2004.04.009
- Zhou, X.Q., Kuznetsov, V.A., Hao, H. and Waschl, J. (2008), "Numerical prediction of concrete slab response to blast loading", Int. J. Impact Eng., 35(10), 1186-1200. https://doi.org/10.1016/j.ijimpeng.2008.01.004
Cited by
- Evaluation of early age mechanical properties of concrete in real structure vol.12, pp.1, 2013, https://doi.org/10.12989/cac.2013.12.1.053
- Modeling the Damage Characteristics of Concrete Subjected to Cyclic Loadings vol.53, pp.5, 2017, https://doi.org/10.1007/s11029-017-9694-4
- Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.917
- Material Modeling of Concrete for the Numerical Simulation of Steel Plate Reinforced Concrete Panels Subjected to Impacting Loading vol.139, pp.2, 2017, https://doi.org/10.1115/1.4035487
- A validated numerical model for predicting the in-plane seismic response of lightly reinforced, low-aspect ratio reinforced concrete shear walls vol.168, pp.None, 2012, https://doi.org/10.1016/j.engstruct.2018.04.025
- The influences of admixtures on the characteristics of pore structure of low-temperature concrete under different curing conditions vol.136, pp.None, 2012, https://doi.org/10.1051/e3sconf/201913603009
- Modifications of the HJC (Holmquist–Johnson–Cook) Model for an Improved Numerical Simulation of Roller Compacted Concrete (RCC) Structures Subjected to Impact Loadings vol.13, pp.6, 2012, https://doi.org/10.3390/ma13061361
- Safety assessment of an underground tunnel subjected to missile impact using numerical simulations vol.27, pp.1, 2021, https://doi.org/10.12989/cac.2021.27.1.001
- Ultra-high performance concrete targets against high velocity projectile impact - a-state-of-the-art review vol.160, pp.None, 2022, https://doi.org/10.1016/j.ijimpeng.2021.104080