DOI QR코드

DOI QR Code

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Received : 2012.08.08
  • Accepted : 2012.10.31
  • Published : 2012.12.25

Abstract

Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.

Keywords

References

  1. Abramson, M.A. and Sexton, D.J. (1999), "Nosocomial methicillin-resistant and methicillin susceptible Staphylococcus aureus primary bacteria: at what costs?", Infect. Cont. Hosp. Ep., 20(6), 408-411. https://doi.org/10.1086/501641
  2. Azad, A.-M., Dolan, S. and Akbar, S.A. (2008), "Development of agile titania sensors via high-temperature reductive etching process (HiTREP ): 1. Structural reorganization", Int. J. Appl. Ceram. Tec., 5(5), 480-489. https://doi.org/10.1111/j.1744-7402.2008.02227.x
  3. Azad, A.-M., Hershey, R., Aboelzahab, A. and Goel, V. (2011), "Infection mitigation efficacy of photoactive titania on orthopedic implant materials", Adv. Orthopedics, 2011(ID 571652), 1-13.
  4. Azad, A.-M., Hershey, R., Ali, S. and Goel, V. (2010), "Bactericidal efficacy of electrospun pure and Fe-doped titania nanofibers", J. Mater. Res., 25(9), 1761-1770. https://doi.org/10.1557/JMR.2010.0237
  5. Azad, A.-M., McKelvey, S. and Al-Firdaus, Z. (2008), "Fabrication of antimicrobial titania nanofibers by electrospinning", Adv. Mater. Manuf. Testing Inform. Center Quart., 3(3), 2-7.
  6. Beiner, J.M., Grauer, J., Kwon, B.K. and Vaccaro, A.R. (2003), "Postoperative wound infections of the spine", Neurosurg. Focus, 15(3), 1-5.
  7. Bohsali, K.I., Wirth, M.A. and Rockwood, C.A. (2006), "Complications of total shoulder arthroplasty", J. Bone Joint Surg. Br., 88(10), 2279-2292. https://doi.org/10.2106/JBJS.F.00125
  8. Boland, E.D., Pawlowski, K.J., Barnes, C.P., Simpson, D.G., Wnek, G.E. and Bowlin, G.L. (2006), "Electrospinning of bioresorbable polymers for tissue engineering scaffolds", Polym. Nanofibers: ACS Symp. Ser., 918, 188-204.
  9. Bornat, A. (1982), "Electrostatic spinning of tubular products", U.S. Patent No. 4,323,525.
  10. Calderone, R.R., Garland, D.E., Capen, D.A. and Oster, H. (1996), "Cost of medical care for postoperative spinal infections," Orthop. Clin. N. Am., 27(1), 171-182.
  11. Carmeli, Y., Troillet, N., Karchmer, A.W. and Samore, M.H. (1999), "Health economic outcomes of antibiotic resistance in Pseudomonas aeruginosa", Arch. Intern. Med., 159(10), 1127-1132. https://doi.org/10.1001/archinte.159.10.1127
  12. Center for Disease Control and Prevention (2012), "Surgical Site Infection (SSI) Event", http://www.cdc.gov/nhsn/PDFs/pscManual/9pscSSIcurrent.pdf.
  13. Chaix, C., Durand-Zaleski, I., Alberti, C. and Brun-Buisson, C. (1999), "Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit", JAMA, 282(18), 1745-1751. https://doi.org/10.1001/jama.282.18.1745
  14. Chambers, H.F. (2001), "The changing epidemiology of staphylococcus aureus", Emerg. Infect. Dis., 7(2), 178-182. https://doi.org/10.3201/eid0702.010204
  15. Chen, G.Q. and Wu, Q. (2005), "The application of polyhydroxyalkanoates as tissue engineering materials", Biomaterials, 26(33), 6565-6578. https://doi.org/10.1016/j.biomaterials.2005.04.036
  16. Cluff, L.E., Reynolds, R.C., Page, D.L. and Breckenridge, J.L. (1968), "Staphylococcal bacteremia and altered host resistance", Ann. Intern. Med., 69(5), 859-873. https://doi.org/10.7326/0003-4819-69-5-859
  17. Cosgrove, S., Qi, Y., Kaye, K., Harbarth, S., Karchmer, A. and Carmeli, Y. (2005), "The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges", Infect. Cont. Hosp. Ep., 26(2), 166-174. https://doi.org/10.1086/502522
  18. Cosgrove, S.E., Kaye, K.S., Eliopoulos, G.M. and Carmeli, Y. (2002), "Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species", Arch. Intern. Med., 162(2), 185-190. https://doi.org/10.1001/archinte.162.2.185
  19. Darouiche, R.O. (2001), "Device-associated infections: A macroproblem that starts with microadherence", Clin. Infect. Dis., 33(9), 1567-1572. https://doi.org/10.1086/323130
  20. Darouiche, R.O. (2004), "Treatment of infections associated with surgical implants", N. Engl. J. Med., 350, 1422-1429. https://doi.org/10.1056/NEJMra035415
  21. Deresinski, S. (2005), "Methicillin-resistant staphylococcus aureus: An evolutionary, epidemiologic, and therapeutic odyssey", Clin. Infect. Dis., 40(4), 562-573. https://doi.org/10.1086/427701
  22. Destaillats, H. (2012), "Indoor air cleaning with photocatalytic oxidation technologies", http://www.public.asu.edu/-hdestail/ research.htm
  23. Emami-Karvani, Z. and Chehrazi, P. (2011), "Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria", Afr. J. Microb. Res., 5(12), 1368-1373.
  24. Engemann, J.J., Carmeli, Y., Cosgrove, S.E., Fowler, V.G., Bronstein, M.Z., Trivette, S.L., Briggs, J.P., Sexton, D.J. and Kaye, K.S. (2003), "Adverse clinical and economic outcomes attributable to methicillin resistance among patients with staphylococcus aureus surgical site infections", Clin. Infect. Dis., 36(5), 592-598. https://doi.org/10.1086/367653
  25. Enwemeka, C.S. (2000), "Attenuation and penetration of visible 632.8 nm and invisible infra-red 904 nm light in soft tissues", J. World Assoc. Laser Therapy, 13(1), 95-101. https://doi.org/10.5978/islsm.13.95
  26. Glassman, S.D., Dimar, J.R., Puno, R.M. and Johnson, J.R. (1996), "Salvage of instrumental lumbar fusions complicated by surgical wound infection", Spine, 21(18), 2163-2169. https://doi.org/10.1097/00007632-199609150-00021
  27. Griffiths, H.J. (1995), "Orthopedic complications", Radiol. Clin. N. Am., 33(2), 401-410.
  28. Hershey, R.A. (2010), Development of titaniananofibers and films for the mitigation of wound infection, M.S. Thesis, The University of Toledo, Toledo, Ohio, U.S.A.
  29. Holmberg, S.D., Solomon, S.L. and Blake, P.A. (1987), "Health and economic impacts of antimicrobial resistance", Rev. Infect. Dis., 9(6), 1065-1078. https://doi.org/10.1093/clinids/9.6.1065
  30. How, T.V. (1985), "Synthetic vascular grafts and methods of manufacturing such grafts", U.S. Patent No. 4,552,707 .
  31. Howden, B., Ward, P., Charles, P., Korman, T., Fuller, A., du Cros, P., Grabsch, E., Roberts, S., Robson, J., Read, K., Bak, N., Hurley, J., Johnson, P., Morris, A., Mayall, B. and Grayson, M. (2004), "Treatment outcomes for serious infections caused by Methicillin-Resistant Staphylococcus aureus with reduced vancomycin susceptibility", Clin. Infect. Dis., 38(4), 521-528. https://doi.org/10.1086/381202
  32. Hwang, S., Song, J., Jung, Y., Kweon, O., Song, H. and Jang, J. (2011), "ElectrospunZnO/$TiO_2$ composite nanofibers as a bactericidal agent", Chem. Commun., 2011(47), 9164-9166.
  33. Jarvis, W.R. (1996), "Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention", Infect. Cont. Hosp. Ep., 17(8), 552-557. https://doi.org/10.1086/647371
  34. Jones, T., Yeaman, M., Sakoulas, G., Yang, S.J., Proctor, R., Sahl, H.G., Schrenzel, J., Xiong, Y. and Bayer, A. (2008), "Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding", Antimicrob. Agents Ch., 52(1), 269-278. https://doi.org/10.1128/AAC.00719-07
  35. Julander, I. (1985), "Unfavorable prognostic factors in Staphylococcus aureus septicemia and endocarditis", Scand. J. Infect. Dis., 17(2), 179-187. https://doi.org/10.3109/inf.1985.17.issue-2.09
  36. Keidel, E. (1929), Farben-zeitung, 34, 1242.
  37. Kim, T., Oh, P.I. and Simor, A.E. (2001), "The economic impact of methicillin-resistant Staphylococcus aureus in Canadian hospitals", Infect. Cont. Hosp. Ep., 22(2), 99-104. https://doi.org/10.1086/501871
  38. Klevens, R.M., Edwards, J.R., Richards, C.L., Horan, T.C., Gaynes, R.P., Pollock, D.A. and Cardo, D.M. (2007), "Estimating health care-associated infections and deaths in U.S. hospitals, 2002", Public Health Rep., 122(2), 160-166. https://doi.org/10.1177/003335490712200205
  39. Koseki, H., Shiraishi, K., Tsurumoto, T., Asahara, T., Baba, K., Taoda, H., Terasaki, N. and Shindo, H. (2009), "Bactericidal performance of photocatalytic titanium dioxide particle mixture under ultraviolet and fluorescent light: An in vitro study", Surf. Interface Anal., 41(10), 771-774. https://doi.org/10.1002/sia.3087
  40. Levi, A.D., Dickman, C.A. and Sonntag, V.K. (1997), "Management of postoperative infections after spinal instrumentation", J. Neurosurg., 86(6), 975-980. https://doi.org/10.3171/jns.1997.86.6.0975
  41. Lin, B., Aboelzahab, A., Azad, A.-M., Goel, V., Leaman, D., Biyani, A., Ebraheim, N. and Serhan, H. (2011), "Infrared radiation activated-nanostructured titania did not induce inflammatory responses in human cells", Annual Meeting of the International Society for the Study of the Lumbar Spine, Gothenburg, Sweden.
  42. Mao, Y. and Wong, S.S. (2006), "Size- and shape-dependent transformation of nanosized titanate into analogousanatase titania nanostructures", J. Am. Chem. Soc., 128(25), 8217-8226. https://doi.org/10.1021/ja0607483
  43. Massie, J.B., Heller, J.G., Abitbol, J.J., McPherson, D. and Garfin, S.R. (1992), "Postoperative posterior spinal wound infections", Clin. Orthop. Relat. R., 284, 99-108.
  44. Meehan, A.M., Osmon, D.R., Duffy, M.C., Hanssen, A.D. and Keating, M.R. (2003), "Outcome of penicillin-susceptible streptococcal prosthetic joint infection treated with debridement and retention of the prosthesis", Clin. Infect. Dis., 36(7), 845-849. https://doi.org/10.1086/368182
  45. Minino, A.M., Arias, E., Kochanek, K.D., Murphy, S.L. and Smith, B.L. (2002), "Deaths: final data for 2000", Nati. Vital Stat. Rep., 50(15), 1-120.
  46. Mohapatra, S.K., Mirsa, M., Mahajan, V.K. and Raja, K.S. (2007), "A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application photoelectrochemical splitting of water", J. Catal., 246(2), 362-369. https://doi.org/10.1016/j.jcat.2006.12.020
  47. Murray, C.K., Obremskey, W.T., Hsu, J.R., Andersen, R.C., Calhoun, J.H., Clasper, J.C., Whitman, T.J., Curry, T.K., Fleming, M.E., Wenke, J.C. and Ficke, J.R. (2011), "Prevention of infections associated with combat-related extremity injuries", J. Trauma., 71(2), 235-257. https://doi.org/10.1097/TA.0b013e318227ac5f
  48. National Nosochomial Infections Surveillance (NNIS) (2001), "System report, data summary from January 1992-June 2001", Am. J. Infect. Control, 29(6), 404-421. https://doi.org/10.1067/mic.2001.119952
  49. National Nosocomial Infections Surveillance (NNIS) (1999), "System report, data summary from January 1990-May 1999", Am. J. Infect. Control, 27(6), 520. https://doi.org/10.1016/S0196-6553(99)70031-3
  50. Nichols, R.L. and Florman, S. (2001), "Clinical presentations of soft-tissue infections and surgical site infections," Clin. Infect. Dis., 33(2), 84-93. https://doi.org/10.1086/321862
  51. Oka, Y., Kim, W.C., Yoshida, T., Hirashima, T., Mouri, H., Urade, H., Itoh, Y. and Kubo, T. (2008), "Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants", J. Biomed. Mater. Res. B, 86B(2), 530-540. https://doi.org/10.1002/jbm.b.31053
  52. Olsen, M.A., Mayfield, J., Lauryssen, C., Polish, L.B., Jones, M., Vest, J. and Fraser, V.J. (2003), "Risk factors for surgical site infection in spinal surgery," J. Neurosurg.-Spine, 98(2), 149-155. https://doi.org/10.3171/spi.2003.98.2.0149
  53. Perencevich, E.N., Sands, K.E., Cosgrove, S.E., Guadagnoli, E., Meara, E. and Platt, R. (2003), "Health and economic impact of surgical site infections diagnosed after hospital discharge", Emerg. Infect. Dis., 9(2), 196-203. https://doi.org/10.3201/eid0902.020232
  54. Rechtine, G.R., Bono, P.L., Cahill, D., Bolesta, M.J. and Chrin, A.M. (2001), "Postoperative wound infection after instrumentation of thoracic and lumbar fractures", J. Orthop. Trauma, 15(8), 566-569. https://doi.org/10.1097/00005131-200111000-00006
  55. Salgado, C.D., O'Grady, N. and Farr, B.M. (2005), "Prevention and control of antimicrobial-resistant infections in intensive care patients", Crit. Care Med., 33(10), 2373-2382. https://doi.org/10.1097/01.CCM.0000181727.04501.F3
  56. Sands, K., Vineyard, G. and Platt, R. (1196), "Surgical site infections occurring after hospital discharge", J. Infect. Dis., 173(4), 963-970.
  57. Sarra-Bournet, C., Charles, C. and Boswell, R. (2011), "Low temperature growth of nanocrystalline $TiO_2$ films with Ar/$O_2$ low-field helicon plasma", Surf. Coat. Tech., 205(15), 3939-3946. https://doi.org/10.1016/j.surfcoat.2011.02.022
  58. Sasso, R.C. and Garrido, B.J. (2008), "Postoperative spinal wound infections", J. Am. Acad. Orthop. Sur., 16(6), 330-337. https://doi.org/10.5435/00124635-200806000-00005
  59. Shi, G., Cai, Q., Wang, C., Lu, N., Wang, S. and Bei, J. (2002), "Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly (L-lactic-co-glycolic acid)", Polym. Advan. Technol., 13(3-4), 227-232. https://doi.org/10.1002/pat.178
  60. Siberry, G., Tekle, T., Carroll, K. and Dick, J. (2003), "Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro", Clin. Infect. Dis., 37(9), 1257-1260. https://doi.org/10.1086/377501
  61. Sieradzki, K., Roberts, R., Haber, S. and Tomasz, A. (2010), "The development of vancomycin resistance in patient with methicillin-resistant Staphylococcus aureus infection", New Engl. J. Med., 340(7), 517-523.
  62. Sill, T.J. and von Recum, H.A. (2008), "Electrospinning: applications in drug delivery and tissue engineering", Biomaterials, 29(13), 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  63. Simons, H.L. (1996), "Process and apparatus for producing patterned non-woven fabrics", U.S. Patent No. 3,280,229.
  64. Smith, E.T. and Emmerson, A.M. (2000), "Surgical site infection surveillance", J. Hosp. Infect., 45(3), 173. https://doi.org/10.1053/jhin.2000.0736
  65. Stall, A.C., Becker, E., Ludwig, S.C., Gelb, D. and Poelstra, K.A. (2009), "Reduction of postoperativespinal implant infection using gentamicin microspheres", Spine, 34(5), 479-483. https://doi.org/10.1097/BRS.0b013e318197e96c
  66. Styers, D., Sheehan, D.J., Hogan, P. and Sahm, D.F. (2006), "Laboratory-based surveillance of current antimicrobial resistance patterns and trends amongstaphylococcus aureus: 2005 status in the united states", Ann. Clin. Mircrobiol. Antimicrob., 5(2), 1-9. https://doi.org/10.1186/1476-0711-5-1
  67. Suwantong, O., Ruktanonchai, U. and Supaphol, P. (2010), "In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin", J. Biomed. Mater. Res., 94A(4), 1216-1225.
  68. Thalgott, J.S., Cotler, H.B., Sasso, R.C., LaRocca, H. and Gardner, V. (1991), "Postoperative infections in spinal implants. Classification and analysis--a multicenter study", Spine, 16(8), 981-984. https://doi.org/10.1097/00007632-199108000-00020
  69. Theiss, S.M., Lonstein, J.E. and Winter, R.B. (1996), "Wound infections in reconstructive spine surgery", Orthop. Clin. N. Am., 27(1), 105-110.
  70. Whitehouse, J.D., Friedman, N.D., Kirkland, K.B., Richardson, W.J. and Sexton, D.J. (2002), "The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost", Infect. Cont. Hosp. Ep., 23(4), 183-189. https://doi.org/10.1086/502033
  71. Yu, J.C., Ho, W., Lin, J., Yip, H. and Wong, P.K. (2003), "Photocatalytic activity, antibacterial effect and photoinducedhydrophilicity of $TiO_2$ films coated on a stainless steel substrate", Environ. Sci. Technol., 37(10), 2296-2301. https://doi.org/10.1021/es0259483
  72. Zhang, Y., Lim, C.T., Ramkrishna, S. and Huang, Z.M. (2005), "Recent development of polymer nanofibers for biomedical and biotechnological applications", J. Mater. Sci.-Mater M., 16(10), 933-946. https://doi.org/10.1007/s10856-005-4428-x

Cited by

  1. Functional electrospun cellulosic nanofiber mats for antibacterial bandages vol.18, pp.12, 2017, https://doi.org/10.1007/s12221-017-7565-1
  2. Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications vol.3, pp.8, 2015, https://doi.org/10.1039/C4TB01823K
  3. Dispersion of TiO 2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-15792-w