DOI QR코드

DOI QR Code

Studies on thermal and swelling properties of Poly (NIPAM-co-2-HEA) based hydrogels

  • Shekhar, Suman (Department of Chemical and Polymer Engineering, Birla Institute of Technology) ;
  • Mukherjee, M. (Department of Chemical and Polymer Engineering, Birla Institute of Technology) ;
  • Sen, Akhil Kumar (Department of Chemical and Polymer Engineering, Birla Institute of Technology)
  • Received : 2012.06.21
  • Accepted : 2012.09.12
  • Published : 2012.12.25

Abstract

Thermoresponsive hydrogels based on N-Isopropylacrylamide (NIPAM) and 2-Hydroxyethylacrylate (HEA) were prepared by free radical polymerization. The hydrogels were characterized by elemental (CHN) analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). DSC thermogram showed two endothermic transitions which are due to hydration of water present in different environments. One near $0^{\circ}C$ called melting transition of ice and was used to calculate the quantitative determination of the amounts of freezing and non freezing water. The other transition above the ambient temperature was due to the combination of hydrophobic hydration and hydrophilic hydration which changes with the copolymer compositions. Swelling and deswelling studies of the hydrogels were carried out using the aqueous media, salt and urea solutions. The experimental results from swelling studies revealed that copolymers have lower rates of swelling and deswelling than the homopolymer.

Keywords

References

  1. Anna, A. and Sen, A.K. (2010), "Thermal and swelling studies of hydrophobically modified poly(acrylamide) hydrogels", J. Appl. Polym. Sci., 117(5), 2795-2802.
  2. Aykara, T. and Dogmus, M. (2004), "The effect of solvent composition on swelling and shrinking properties of poly (acrylamide-co-itaconic acid)hydrogels", J. Euro. Polym., 40(11), 2605-2609. https://doi.org/10.1016/j.eurpolymj.2004.06.024
  3. Campillo, C.C., SchrCoder, A.P., Marques, C.M. and epin-Donat, B.P. (2008), "Volume transition in composite poly(NIPAM)-giant unilamellar vesicles", Soft Matter., 4, 2486-2491. https://doi.org/10.1039/b808472f
  4. Casillas, N., Puig, J.E., Olayo, R. and Franses, E.I. (1989), "State of water and surfactant in lyotropic liquid crystals", Langmuir, 5(2), 384-389. https://doi.org/10.1021/la00086a017
  5. Chunyue, P., Quigde, L., Dian, Y.U., Yanping, R., Nianqian, W. and Xingcui, L. (2008), "Swelling and drug releasing properties of Poly(N-isopropylacrylamide) thermosensitive copolymeric gels", Front chem. china, 3(3), 314-319. https://doi.org/10.1007/s11458-008-0054-8
  6. Davis, T.P., Huglin, M.B. and Yip, D.C.F. (1988), "Properties of poly(N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethylene glycol dimethacrylate", Polymer, 29(4), 701-706. https://doi.org/10.1016/0032-3861(88)90087-0
  7. Drost-Hansen, W. (1969), "Water near solid interfaces", Ind. Eng. Chem., 61(11), 10-47. https://doi.org/10.1021/ie50719a005
  8. Guiseppi-Elie, A., Sheppard, N.F., Brahim, S. and Narinesingh, D. (2001), "Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays" Biotechnol. Bioeng., 75(4), 475-484 https://doi.org/10.1002/bit.10069
  9. Gyenes, T., Torma, V., Gyarmati, B. and Zrýnyi, M. (2008), "Synthesis and swelling properties of novel pHsensitive poly(aspartic acid) gels", Acta Biomater, 4(3), 733-744. https://doi.org/10.1016/j.actbio.2007.12.004
  10. Hirokawa, Y. and Tanaka, T. (1984), "Volume phase transition in a nonionic gel", J. Chem. Phys., 81(12), 6379-6380. https://doi.org/10.1063/1.447548
  11. Huglin, M.B., Rehab, M.M. and Zakaria, M.B. (1986), "Thermodynamic interaction in copolymeric hydrogels", Macromolecules, 19(12), 2986-2991. https://doi.org/10.1021/ma00166a019
  12. Isreachvilli, J. (1998), Intermolecular and surface forces, Oxford University Press.
  13. Katime, I., Apodaca, E.D., Mendizabal, E. and Puig, J.E. (2000), "Acrylic acid/methyl methacrylate hydrogels. i. effect of composition on mechanical and thermodynamic properties", J. Macromol. Sci. A., 37(4), 307-321. https://doi.org/10.1081/MA-100101095
  14. Kim, S. (2003), "Synthesis and charaterstics of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly(N-Isopropylacrylamide)", React. Funct. Polym., 55(1), 61-67. https://doi.org/10.1016/S1381-5148(02)00215-8
  15. Kulkarni, R.V. and Biswanath, S. (2009), "Electro responsive Polyacrylamide-grafted-xanthan Hydrogels for Drug Delivery", J. Bioact. Compat. Pol., 24(4), 368-384. https://doi.org/10.1177/0883911509104475
  16. Kumara, A., Srivastavaa, A., Galaevb, I.Y. and Mattiasson, B. (2007), "Smart polymers: Physical forms and bioengineering applications" Prog. Polym. Sci., 32(10), 1205-1237. https://doi.org/10.1016/j.progpolymsci.2007.05.003
  17. Lee, W.F. and Chen, Y.J. (2001), "Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels", J. Appl. Polym. Sci., 82(10), 2487-2496. https://doi.org/10.1002/app.2099
  18. Li, W., Xue, F. and Cheng, R. (2005), "States of water in partially swollen poly(vinyl alcohol) hydrogels", Polymer, 46(25), 12026-12031. https://doi.org/10.1016/j.polymer.2005.09.016
  19. Li, Y. and Tanaka, T. (1992), "Kinetics of swelling and shrinking of gels", J. Chem. Phys., 92(2), 1365-1371.
  20. Manning, G.S. (1969), "Limiting laws and counterion condensation in polyelectrolyte solutions I. colligative properties", J. Chem. Phys., 51(3), 924-933. https://doi.org/10.1063/1.1672157
  21. Mu, B., Wang, T., Wu, Z., Shi, H., Xue, D. and Liu, P. (2011), "Fabrication of functional block copolymer grafted supermagnetic nanoparticles for targeted and controlled drug delivery", Coll. Surf. A., 375(1), 163-168. https://doi.org/10.1016/j.colsurfa.2010.11.081
  22. Otake, K., Inomata, H., Konno, M. and Saita, S. (1990), "Thermal analysis of the volume phase transition with n-isopropylacrylamide gels", Macromolecules, 23(1), 283-289. https://doi.org/10.1021/ma00203a049
  23. Shibayama, M. and Tanaka, T. (1993), "Volume phase transition and related phenomena of polymer gels", Adv. Polym. Sci., 109, 1-62. https://doi.org/10.1007/3-540-56791-7_1
  24. Ratner, B.D. and. Miller, I.F (1972), "Interaction of urea with poly(2-hydroxyethyl methacrylate) hydrogels", J. Polym. Sci., 10(8), 2425-2445. https://doi.org/10.1002/pol.1972.150100818
  25. Sen, A.K., Roy, S. and Juvekar, V.A. (2007), "Effect of structure on solution and interfacial properties of sodium polystyrene sulfonate (NaPSS)", Polym. Int., 56(2), 167-174.
  26. Spanoudaki, A., Fragiadakis, D., Vartzelinikaki, K., Pissis, P., Hernandez, R. and Pradas, M.M. (2006), Surface chemistry in biomedical and environmental science, 229-240.
  27. Tanford, C. (1980), "The hydrophobic effect: Formation, micelles and biological membranes", 2nd edition, John Wiley and Sons, USA.
  28. Thomas, W. (1964), "Encyclopedia of polymer science and technology, bikales", N., Ed. Wiley Interscience NY. 1, 177-179.
  29. Tokuyama, H., Ishihara, N. and Sakohara, S. (2007), "Effects of synthesis-solvent on swelling and elastic properties of poly (N-Isopropylacrylamide) hydrogels", J. Eur. Polym., 43(12), 4975-4982. https://doi.org/10.1016/j.eurpolymj.2007.09.016
  30. Van Dyke, J.D. and Kasperski, K.L. (1993), "Thermogravimetric study of polyacrylamide with evolved gas analysis", J. Polym. Sci. Pol. Chem., 31(7), 1807-1823. https://doi.org/10.1002/pola.1993.080310720
  31. Varghese, S. (2001), "Role of hydrophobic interactions on thermosensitivity, Metal complexation and rheology of associating polymers", University of Pune, India.
  32. Wang, J.W. and Wu, W. (2005), "Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels", Eur. Polym. J., 41(5), 1143-1151. https://doi.org/10.1016/j.eurpolymj.2004.11.034
  33. Weast, R.C. and Astle, M.J. (1982), Hand book of chemistry and physics, 3rd edition, CRC press Florida, E-62.
  34. Wood, J.M., Attwood, D.A. and Collett, J.H. (1981), "The swelling properties of poly (2- hydroxyethyl methacrylate) hydrogels polymerized by gamma-irradiation and chemical initiation", Int. J. Pharmaceut., 7(3), 189-196. https://doi.org/10.1016/0378-5173(81)90104-6

Cited by

  1. New endeavours involving the cooperative behaviour of TMAO and urea towards the globular state of poly(N-isopropylacrylamide) vol.7, pp.54, 2017, https://doi.org/10.1039/C7RA05120D
  2. Preparation of poly(N-isopropylacrylamide)-terminated carbon nanotubes and determining their aggregation properties in response to infrared light and heating vol.47, pp.10, 2015, https://doi.org/10.1038/pj.2015.47
  3. Synthesis and characterization of hydrogels containing REDOX‐RESPONSIVE 2,2,6,6 ‐ TETRAMETHYLPIPERIDINYLOXY methacrylate and THERMORESPONSIVE N vol.58, pp.11, 2012, https://doi.org/10.1002/pol.20200172
  4. Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles vol.16, pp.24, 2020, https://doi.org/10.1039/d0sm00929f
  5. Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation vol.8, pp.35, 2012, https://doi.org/10.1039/d0tc00139b
  6. Design and fabrication of dual responsive lignin-based nanogel via “grafting from” atom transfer radical polymerization for curcumin loading and release vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-81393-3