DOI QR코드

DOI QR Code

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D. (TU Braunschweig, Institut fur Werkstoffe) ;
  • Rosler, J. (TU Braunschweig, Institut fur Werkstoffe) ;
  • Wehrs, J. (TU Braunschweig, Institut fur Werkstoffe) ;
  • Eckerlebe, H. (Helmholtz-Zentrum Geesthacht) ;
  • Gilles, R. (TU Munchen, Forschungs Neutronenquelle Heinz Maier-Leibnitz (FRM II))
  • 투고 : 2012.04.18
  • 심사 : 2012.08.14
  • 발행 : 2012.09.25

초록

Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.

키워드

참고문헌

  1. Bolitz, M.C., Brunner, M., Völkl, R., Mukherji, D., Roesler, J. and Glatzel, U. (2012), "Microstructural study of Boron-doped Co-Re-Cr alloys by means of transmission electron microscopy and electron energy loss spectroscopy", Int. J. Mater. Res., 103(5), 554-558. https://doi.org/10.3139/146.110729
  2. Brunner, M., Hüttner, R., Bölitz, M.C., Völkl, R., Mukherji, D., Rösler, J., Depka, T., Somsen, Ch., Eggeler, G. and Glatzel, U. (2010), "Creep properties beyond $100^{\circ}C$ and microstructure of Co-Re-Cr alloys", Mater. Sci. Eng., 528, 650-656. https://doi.org/10.1016/j.msea.2010.09.035
  3. Cadel, E., Lemarchand, D., Chambrel, S. and Blavette, D. (2002), "Atom probe tomography investigation of the microstructure of superalloys N18", Acta Mater., 50(5), 957-966. https://doi.org/10.1016/S1359-6454(01)00395-0
  4. Depka, T., Somsen, C., Eggeler, G., Mukherji, D., Rosler, J., Kruger, M., Saage, H. and Heilmaier, M. (2009), "Microstructures of Co-Re-Cr, Mo-Si and Mo-Si-B high-temperature alloys", Mater. Sci. Eng., 510-511, 337-341. https://doi.org/10.1016/j.msea.2008.06.054
  5. Gilles, R., Mukherji, D., Strunz, P., Hofmann, M., Hoelzel, M., Barbier, B., Euler, H., Roesler, J. and Gasser, U. (2012), "Stability and coarsening of TaC precipitates in Co-Re-Cr based alloy being developed for ultra-high temperature applications", Acta Mater., Submitted.
  6. Gorr, B., Trindade, V., Burk, S., Christ, H.J., Klauke, M., Mukherji, D. and Rösler, J. (2009), "Oxidation behaviour of model cobalt-rhenium alloys during short-term exposure to laboratory air at elevated temperature", Oxid. Met., 71(3-4), 157-172. https://doi.org/10.1007/s11085-008-9133-y
  7. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. and Häuser, D. (1996), "Two-dimensional detector software: From real detector to idealised image or two-theta scan", High Pressure Res., 14(4), 235-248. https://doi.org/10.1080/08957959608201408
  8. Heilmaier, M., Krüger, M., Saage, H., Rosler, J., Mukherji, D., Glatzel, U., Völkl, R., Hüttner, R., Eggeler, G. Somsen, Ch., Depka, T., Christ, H.J., Gorr, B. and Burk, S. (2009), "Current development status of metallic materials for structural applications beyond nickel base superalloys", Jom.-US, 61(7), 61-67. https://doi.org/10.1007/s11837-009-0106-7
  9. Kim, H.J., En, Z., Ho, J.H., Jang, J.S., Jurneav, N. and Usmanova, M.M. (1997), "Boron distribution measurement in metals by neutron induced radiography", J. Radioanal. Nucl. Ch., 216(1), 117-120. https://doi.org/10.1007/BF02034506
  10. Klauke, M., Mukherji, D., Gorr, B., Christ, H.J. and Rösler, J. (2009), "Oxidation behaviour of experimental Co- Re-base alloys in laboratory air at $1000^{\circ}C$", Int. J. Mater. Res., 100, 104-111. https://doi.org/10.3139/146.101792
  11. Lippmann, T., Lottermoser, L., Beckmann, F., Martins, R.V., Dose, T., Kirchhof, R. and Schreyer, A. (2007), "New developments at the engineering materials science beamline HARWI II", HASYLAB annual report 2007, Caliebe, W., Drube, W., Rickers, K., Schneider, J.R. (Eds.), HASYLAB/DESY, Hamburg.
  12. Lukas, H., Fries, S.G. and Sundman, Bo. (2007), Computational thermodynamics: The calphad method, Cambridge University Press, cambridge, UK.
  13. Massalski, T.B. (1986), Binary alloy phase diagrams, 1, ASM, Ohio.
  14. Miller, S. (1996), "Advanced materials mean advanced engines" Abstracted from Materials World, 4, 446-449. www.azom.com/details.asp?ArticleID=90
  15. Mukherji, D., Klauke, M., Strunz, P., Zizak, I., Schumacher, G., Wiedenmann, A. and Rösler, J. (2010a), "High temperature stability of Cr-carbides in an experimental Co-Re-based alloy", Int. J. Mater. Res., 101, 340-348. https://doi.org/10.3139/146.110282
  16. Mukherji, D. and Rösler, J. (2010b), "Co-Re-based alloys for high temperature applications: Design considerations and strengthening mechanisms", J. Phys. Conf. Series, 240(1), 012066. https://doi.org/10.1088/1742-6596/240/1/012066
  17. Mukherji, D., Strunz, P., Gilles, R., Hofmann, M., Schmitz, F. and Rösler, J. (2010c), "Investigation of phase transformations by in-situ neutron diffraction in a Co-Re-based high temperature alloy", Mater. Lett., 64, 2608-2611. https://doi.org/10.1016/j.matlet.2010.08.066
  18. Mukherji, D., Rösler, J., Fricke, T., Piegert, S. and Schmitz, F. (2010d), "New concept of composite strengthening in Co-Re-based alloys for high temperature applications in gas turbines", Proceedings of 9th Liege Conference on Materials for Advanced Power Engineering, Lecomte, J., Contrepois, Q., Beck, T. and Kuhn, B. (Eds.), Energy & Environment, Vol 94, Julich Forschingszentrum, ISBN 978-3-89336-685-9.
  19. Mukherji, D., Strunz, P., Piegert, S., Gilles, R., Hofmann, M., Hölzel, M. and Rösler, J. (2012a), "The hcp-fcc transition in co-re-based experimental alloys investigated by neutron scattering", Metall. Mater. Trans. A, published online, DOI: 10.1007/s11661-011-1058-4.
  20. Mukherji, D., Rosler, J., Kruger, M., Heilmaier, M., Bolitz, M.C., Volkl, R., Glatzel, U. and Szentmiklósi, L. (2012b), "Effects of boron addition on microstructure and mechanical properties of Co-Re based high temperature alloys", Scripta Mater., 66, 60-63. https://doi.org/10.1016/j.scriptamat.2011.10.007
  21. Mukherji, D., Szentmiklósi, L., Zsuzsi, M. and Rosler, J. (2012c), "Mapping surface boron density distribution in Co-Re alloys with neutron induced a track mapping"- in preparation.
  22. Okamoto, H. (2003), "Co-Cr (Cobalt-Chromium)", J. Phase Equilib. Diff., 24, 377-378. https://doi.org/10.1361/105497103770330460
  23. Perepezko, J.H. (2009), "The hotter the engine, the better", Science, 326, 1068-1069. https://doi.org/10.1126/science.1179327
  24. Reed, R.C. (2006), The Superalloys: fundamentals and applications, Cambridge University Press, Cambridge.
  25. Rosler, J., Mukherji, D. and Baranski, T. (2007), "Co-Re-based alloys: A new class of high temperature materials?", Adv. Eng. Mater., 9(10), 876-881. https://doi.org/10.1002/adem.200700132
  26. Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K. (2006), "Cobalt-base high-temperature alloys", Science, 312, 90-91. https://doi.org/10.1126/science.1121738
  27. Sokolovskaya, E.M., Tuganbaev, M.L., Stepanova, G.I., Kazakova, E.F. and Sokolova, I.G. (1986), "Interaction of cobalt with chromium and rhenium", J. Less-Common Metals, 124, 5-7. https://doi.org/10.1016/0022-5088(86)90502-3
  28. Thuvander, M. and Stiller, K. (2000), "Microstructure of a boron containing high purity nickel-based alloy 690", Mater. Sci. Eng., 281(1-2), 96-103. https://doi.org/10.1016/S0921-5093(99)00741-8

피인용 문헌

  1. Neutron and synchrotron probes in the development of Co–Re-based alloys for next generation gas turbines with an emphasis on the influence of boron additives vol.47, pp.4, 2014, https://doi.org/10.1107/S1600576714013624
  2. Stability of TaC precipitates in a Co–Re-based alloy being developed for ultra-high-temperature applications vol.49, pp.4, 2016, https://doi.org/10.1107/S1600576716009006
  3. Beyond Ni-base superalloys: Influence of Cr addition on Co-Re base alloys strengthened by nano-sized TaC precipitates 2018, https://doi.org/10.1016/j.physb.2017.11.059
  4. In Situ Neutron Diffraction Study of Ni Addition in Co-Re-Cr High-Temperature Alloys and Influence on Phase Transformations vol.14, pp.suppl1, 2012, https://doi.org/10.1134/s1027451020070071