DOI QR코드

DOI QR Code

Limitations for the control of wind-loaded slender bridges with movable flaps

  • Kirch, Arno (Institute of Steel Structures, Technische Universitat Carolo-Wilhelmina zu Braunschweig) ;
  • Peil, Udo (Institute of Steel Structures, Technische Universitat Carolo-Wilhelmina zu Braunschweig)
  • Received : 2010.07.12
  • Accepted : 2012.03.13
  • Published : 2012.09.25

Abstract

This article presents theoretical investigations on techniques for the improvement of the dynamic characteristics of slender bridges under wind action. Aerodynamically effective control shields are applied as controlled actuators. The first part of the article describes the modelling of the uncontrolled aeroelastic system. Acting aerodynamic forces are consistently characterised using linear time-invariant transfer elements in terms of rational functions. On this basis, two configuration levels of the uncontrolled system are represented with linear time-invariant state-space models and investigated. The second part of the article addresses controller design and the behaviour of the controlled aeroelastic system. Both fundamental limits for stabilisation and the efficiency for attenuating the influence of gusts are described for different actuator mechanisms. The results are derived and discussed with methods of control theory.

Keywords

References

  1. Abel, I. (1979), An analytical technique for predicting the characteristics of a flexible wing equipped with an active flutter-suppression system and comparison with wind-tunnel data, NASA-TP-1367, Technical Paper, NASA.
  2. Aslan, H. and Starossek, U. (2008), "Passive control of bridge deck flutter using tuned mass dampers and control surfaces" EURODYN 2008 - Proceedings of the 7th European Conference on Structural Dynamics, Southampton / UK , Paper E298.
  3. Boonyapinyo, V., Aksorn, A. and Lukkunaprasit, P. (2007), "Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers", Wind Struct., 10(1), 1-22. https://doi.org/10.12989/was.2007.10.1.001
  4. Cobo del Arco, D. and Aparicio, A.C. (1999), "Improving suspension bridge wind stability with aerodynamic appendages", J. Struct. Eng. - ASCE, 125, 1367-1375 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1367)
  5. Edwards, J.W. (1977), Unsteady aerodynamic modeling and active aeroelastic control, NASA-CR-148019, Contractor Report, NASA.
  6. Hansen, H.I. (1998), Active vibration control of long suspension bridges, Dissertation, Aalborg University, Denmark.
  7. Hansen, H.I., Thoft-Christensen, P., Mendes, P.A. and Branco, F.A. (2000), "Wind-tunnel tests of a bridge model with active vibration control", Struct. Eng., 10(4), 249-253. https://doi.org/10.2749/101686600780481239
  8. Hansen, H.I. and Thoft-Christensen, P. (2001), "Active flap control of long suspension bridges", J. Struct. Control, 8(1), 33-82. https://doi.org/10.1002/stc.4300080104
  9. Huynh, T. (2000), Suspension bridge aerodynamics and active control, Dissertation, Aalborg University, Denmark.
  10. Huynh, T. and Thoft-Christensen, P. (2001), "Suspension bridge flutter for girders with separate control flaps", J. Bridge Eng., 6, 168-175. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:3(168)
  11. Karpel, M. (1981), Design for active and passive flutter suppression and gust alleviation, NASA-CR-3482, Contractor Report, NASA.
  12. Kirch, A. and Peil, U. (2009), "Fundamental restrictions for the closed-loop control of wind-loaded, slender bridges", Wind Struct., 12(5), 457-474. https://doi.org/10.12989/was.2009.12.5.457
  13. Kirch, A. and Peil, U. (2011), "Transfer function approximation of motion-induced aerodynamic forces with rational functions", Wind Struct., 14(2), 133-151. https://doi.org/10.12989/was.2011.14.2.133
  14. Klein, R.E., Cusano, C. and Stukel, J.J. (1972), "Investigation of a method to stabilize wind induced oscillations in large structures", Proceedings of the ASME Winter Annual Meeting, New York, Paper 72-WA / Aut-11.
  15. Kobayashi, H. and Nagaoka, H. (1992), "Active control of flutter of a suspension bridge", J.Wind Eng. Ind. Aerod., 41(1-3), 143-151. https://doi.org/10.1016/0167-6105(92)90402-V
  16. Kussner, H.G. and Gollnitz, H. (1964), Tabellen der aerodynamischen Derivativa des schwingenden Streckenprofils mit Knicken und Stufen, DLR FB 64-05, Technical Report, Deutsche Luft- und Raumfahrt. (DLR) (in German).
  17. Kussner, H.G. and Schwarz, L. (1940), "Der schwingende Flugel mit aerodynamisch ausgeglichenem Ruder", Luftfahrtforschung, 17, 337-354 (in German).
  18. Kwon, S.D. (1996), Flutter analysis and active aerodynamic control of long-span bridges under wind loads, Dissertation, Seoul National University, Korea.
  19. Kwon, S.D. and Chang, S.P. (2000), "Suppression of flutter and gust response of bridges using actively controlled edge surfaces", J.Wind Eng. Ind. Aerod., 88(2-3), 263-281. https://doi.org/10.1016/S0167-6105(00)00053-2
  20. Lunze, J. (2004), Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Ed. 4th, Springer, Berlin (in German).
  21. Lunze, J. (2005), Regelungstechnik 2: Mehrgrossensysteme, Digitale Regelung, Ed. 3rd, Springer, Berlin (in German).
  22. Nissen, H.D., Sorensen, P.H. and Jannerup, O. (2004), "Active aerodynamic stabilisation of long suspension bridges", J. Wind Eng. Ind. Aerod., 92(10), 829-847. https://doi.org/10.1016/j.jweia.2004.03.012
  23. Omenzetter, P., Wilde, K. and Fujino, Y. (2000a,b), "Suppression of wind-induced instabilities of a long span bridge by a passive deck-flaps control system - Part I: Formulation; Part II: Numerical simulations" , J. Wind Eng. Ind. Aerod., 87(1), 61-91 https://doi.org/10.1016/S0167-6105(00)00016-7
  24. Omenzetter, P., Wilde, K. and Fujino, Y. (2002a,b), "Study of passive deck-flaps flutter control system on full bridge model. - I: Theory; II: Results" J. Eng. Mech. - ASCE, 128, 264-286. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(264)
  25. Ostenfeld, K.H. and Larsen, A. (1992), "Bridge engineering and aerodynamics", Aerodynamics of Large Bridges, Proceedings of the 1st International Symposium on Aerodynamics of Large Bridges, Copenhagen, Denmark, 3-22.
  26. Ostenfeld, K.H. and Larsen, A. (1997), "Elements of active flutter control of bridges", Proceedings of the IABSE Conference on New Technologies in Structural Engineering, Lisbon, 683-694.
  27. Piesold, D.D.A. and Corney, J.M. (1999), "Active aerofoil stabilization of cable-supported bridge decks", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 134, 67-76.
  28. Pourzeynali, S. and Datta, T.K. (2002), "Control of flutter of suspension bridge deck using TMD", Wind Struct., 5(5), 407-422. https://doi.org/10.12989/was.2002.5.5.407
  29. Preidikman, S. and Mook, D.T. (1997), "A new method for actively suppressing flutter of suspension bridges", J. Wind Eng.Ind. Aerod., 69-71, 955-974. https://doi.org/10.1016/S0167-6105(97)00220-1
  30. Preidikman, S. and Mook, D.T. (1998), "On the development of a passive-damping system for wind-excited oscillations of long-span bridges", J. Wind Eng.Ind. Aerod., 77-78, 443-456. https://doi.org/10.1016/S0167-6105(98)00163-9
  31. Roger, K. (1977), "Airplane math modelling methods for active control design", Proceedings of the Structural Aspects of Active Controls , AGARD Conference, 228, 4-1 - 4-11.
  32. Sears, W.R. (1940), "Operational methods in the theory of airfoils in non-uniform motion", J. Franklin I., 230, 95-111. https://doi.org/10.1016/S0016-0032(40)90651-2
  33. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: fundamentals and applications to design, Ed. 3rd , Wiley, New York.
  34. Theodorsen, T. and Garrick, I.E. (1941), Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance, NACA-TR-736, Technical Report, NACA.
  35. Tiffany Hoadley, S. and Adams Jr., W.M. (1988), Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces, NASA-TP-2776, Technical Paper, NASA.
  36. Ubertini, F. (2010), "Prevention of suspension bridge flutter using multiple tuned mass dampers", Wind Struct., 13(3), 235-256. https://doi.org/10.12989/was.2010.13.3.235
  37. Wilde, K. and Fujino, Y. (1998), "Aerodynamic control of bridge deck flutter by active surfaces", J. Eng. Mech.-ASCE ,124, 718-727. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(718)
  38. Wilde, K., Fujino, Y. and Kawakami, T. (1999), "Analytical and experimental study on passive aerodynamic control of flutter of a bridge deck", J. Wind Eng.Ind. Aerod, 80, 105-119. https://doi.org/10.1016/S0167-6105(98)00196-2
  39. Wilde, K., Omenzetter, P. and Fujino, Y. (2001), "Suppression of bridge flutter by active deck-flaps control system", J. Eng. Mech.-ASCE, 127, 80-89. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(80)
  40. ZAERO (2004), ZAERO - Engineers toolkit for aeroelastic solutions Version 7.2, Theoretical Manual, ZONA Technology, Inc.

Cited by

  1. Yaw wind effect on flutter instability of four typical bridge decks vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.317