Acknowledgement
Supported by : National Science Council, Taiwan
References
- Agrawal, A.K. and Yang, J.N. (2000), "Compensation of time-delay for control of civil engineering structures", Earthq. Eng. Struct. D., 29(1), 37-62. https://doi.org/10.1002/(SICI)1096-9845(200001)29:1<37::AID-EQE894>3.0.CO;2-A
- Aldo, D. and Alfred, R. (1999), "Design of an integrated electromagnetic levitation and guidance system for Swiss Metro", Proceedings of the EPE'99, Lausanne, Swiss.
- Astrom, K.J. and Hagglund, T. (1988), Automatic Tuning of PID Controllers, Instrument Society of America.
- Baker, C.J. (1991a), "Ground vehicles in high cross winds. Part I: steady aerodynamic forces", J. Fluid. Struct., 5(1), 69-90. https://doi.org/10.1016/0889-9746(91)80012-3
- Baker, C.J. (1991b), "Ground vehicles in high cross winds. Part II: unsteady aerodynamic forces", J. Fluid. Struct., 5(1), 91-111. https://doi.org/10.1016/0889-9746(91)80013-4
-
Bittar, A. and Sales, R.M. (1998), "
$H_{2}$ and$H_{\infty}$ control for maglev vehicles", IEEE Contr. Syst. Mag., 18(4), 18-25. https://doi.org/10.1109/37.710875 - Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S. and Tomasini, G. (2008), "Crosswind action on rail vehicles: Wind tunnel experimental analyses", J. Wind Eng. Ind. Aerod., 96(5), 584-610. https://doi.org/10.1016/j.jweia.2008.02.030
- Bohn, G. and Steinmetz, G. (1984), "The electromagnetic levitation and guidance technology of the transrapid test facility Emsland", IEEE T. Magn., 20(5), 1666-1671. https://doi.org/10.1109/TMAG.1984.1063246
- Cai, Y., Chen, S.S., Rote, D.M. and Coffey, H.T. (1996), "Vehicle/guideway dynamic interaction in maglev systems", J. Dyn. Sys. Meas. Cont., 118(3), 526-530. https://doi.org/10.1115/1.2801176
- Cai, Y. and Chen, S.S. (1997), "Dynamic characteristics of magnetically-levitated vehicle systems", App. Mech. Rev., 50(11), 647-670. https://doi.org/10.1115/1.3101676
- Cao, Y., Xiang, H. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech.- ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1)
- Fujii, K. and Ogawa, T. (1995), "Aerodynamics of high speed trains passing by each other", Comput. Fluids, 24(8), 897-908. https://doi.org/10.1016/0045-7930(95)00024-7
- Guo, W.W., Xia, H. and Xu, Y.L (2010), "Running safety analysis of a train on the Tsing Ma Bridge under turbulent wind", J. Earthq. Eng., 9(3), 307-318.
- Kwon, S.D., Lee, J.S., Moon, J.W. and Kim, M.Y. (2008,) "Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind", Eng. Struct., 30(12), 3445-3456. https://doi.org/10.1016/j.engstruct.2008.05.003
- Lee, T.Y. and Kawashima, K. (2007), "Semiactive control of nonlinear isolated bridges with time delay", J. Struct. Eng. -ASCE, 133(2), 235-241. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(235)
- Li, Y., Qiang, S., Liao, H. and Xu, Y.L. (2005), "Dynamics of wind-rail vehicle-bridge systems", J. Wind Eng. Ind. Aerod., 93(6), 483-507. https://doi.org/10.1016/j.jweia.2005.04.001
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(7), 67-94.
- Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magnetorheological dampers", Eng. Struct., 24(3), 295-307 https://doi.org/10.1016/S0141-0296(01)00096-7
- Ogata, K. (1997), Modern control engineering, 3rd Ed., Prentice-Hall, Englewood Cliffs, NJ.
- Samavedam, G., Kokkins, S., Raposa, F., Thompson, M. and Anagnostopoulos, G. (2002), Assessment of CHSST Maglev for U.S. Urban Transportation, U.S. Department of Transportation, Federal Transit Administration, Report Number FTA-MD-26-7029-2002.1.
- Shi, J., Wei, Q. and Zhao, Y. (2007), "Analysis of dynamic response of the high-speed EMS maglev vehicle/ guideway coupling system with random irregularity", Vehicle. Syst. Dyn., 45(12), 1077-1095. https://doi.org/10.1080/00423110601178441
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures, Wiley, NY.
- Song, M.K. and Fujino, Y. (2008), "Dynamic analysis of guideway structures by considering ultra high-speed maglev train-guideway interaction", Struct. Eng. Mech., 29(4), 355-380. https://doi.org/10.12989/sem.2008.29.4.355
- Soong, T.T. (1990), Active structural control: theory and practice, Longman Scientific & Technical, Essex, England.
- Suzuki, M., Tanemoto, K. and Maeda, T. (2003), "Aerodynamic characteristics of train/vehicles under cross winds", J. Wind Eng. Ind. Aerod., 91(1-2), 209-218. https://doi.org/10.1016/S0167-6105(02)00346-X
- Symans, M.D. and Constantinou, M.C. (1997), "Seismic testing of a building structure with a semi-active fluid damper control system", Earthq. Eng. Struct. D., 26, 759-777. https://doi.org/10.1002/(SICI)1096-9845(199707)26:7<759::AID-EQE675>3.0.CO;2-E
- Xia, H., Guo, W.W., Zhang, N. and Sunb, G.J. (2008), "Dynamic analysis of a train-bridge system under wind action", Comput Struct., 86(19-20), 1845-1855. https://doi.org/10.1016/j.compstruc.2008.04.007
- Xu, Y.L., Zhang, N. and Xia, H. (2004), "Vibration of coupled train and cable-stayed bridge systems in cross winds", Eng. Struct., 26(10), 89-1406.
- Yang, Y.B. and Kuo S.R. (1994), Theory and analysis of nonlinear framed structures, Singapore: Prentice Hall.
- Yang, Y.B., Yau, J.D. and Wu, Y.S. (2004), Vehicle-Bridge Interaction Dynamics, World Scientific, Singapore.
- Yang, Y.B. and Yau, J.D. (2011), "An iterative interacting method for dynamic analysis of the maglev train-guideway/foundation-soil system", Eng. Struct., 33, 1013-1024. https://doi.org/10.1016/j.engstruct.2010.12.024
- Yau, J.D. (2009a), "Vibration control of maglev vehicles traveling over a flexible guideway", J. Sound Vib., 321(1-2), 184-200. https://doi.org/10.1016/j.jsv.2008.09.030
- Yau, J.D. (2009b), "Response of a maglev vehicle moving on a series of guideways with differential settlement", J. Sound Vib., 324(3-5), 816-831. https://doi.org/10.1016/j.jsv.2009.02.031
- Yau, J.D. (2009c), "Vehicle/bridge interactions of a rail suspension bridge considering support movements", Inter. Multisca. Mech., 2(3), 263-276. https://doi.org/10.12989/imm.2009.2.3.263
- Yau, J.D. (2010a), "Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion", J. Sound Vib., 329(2), 171-188. https://doi.org/10.1016/j.jsv.2009.08.038
- Yau, J.D. (2010b), "Response of a maglev vehicle moving on a two-span flexible guideway", J. Mech., 26(1), 95-103. https://doi.org/10.1017/S1727719100003762
- Yau, J.D. (2010c), "Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions", J. Sound Vib., 329(10), 1743-1759. https://doi.org/10.1016/j.jsv.2009.11.039
- Yau, J.D. and Yang, Y.B. (2006), "Vertical accelerations of simple beams due to successive loads traveling at resonant speeds", J. Sound Vib., 289(1-2), 210-228. https://doi.org/10.1016/j.jsv.2005.02.037
- Zhao, C.F. and Zhai, W.M. (2002), "Maglev vehicle/guideway vertical random response and ride quality", Vehicle. Syst. Dyn., 38(3), 185-210. https://doi.org/10.1076/vesd.38.3.185.8289
- Zheng, X.J., Wu, J.J. and Zhou, Y.H. (2000), "Numerical analyses on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways", J. Sound Vib., 235(1), 43-61. https://doi.org/10.1006/jsvi.1999.2911
- Zheng, X.J., Wu, J.J. and Zhou, Y.H. (2005), "Effect of spring non-linearity on dynamic stability of a controlled maglev vehicle and its guideway system", J. Sound Vib., 279(1-2), 201-215. https://doi.org/10.1016/j.jsv.2003.10.025
Cited by
- Gust Wind Effects on Stability and Ride Quality of Actively Controlled Maglev Guideway Systems vol.2017, 2017, https://doi.org/10.1155/2017/9716080
- Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway vol.10, pp.5, 2013, https://doi.org/10.1590/S1679-78252013000500007
- Dynamic Interaction Analysis of Maglev-Guideway System Based on a 3D Full Vehicle Model vol.17, pp.01, 2017, https://doi.org/10.1142/S0219455417500067
- Numerical calculations of aerodynamic performance for ATM train at crosswind conditions vol.18, pp.5, 2014, https://doi.org/10.12989/was.2014.18.5.529
- Invisible transportation infrastructure technology to mitigate energy and environment vol.7, pp.1, 2017, https://doi.org/10.1186/s13705-017-0128-x
- Dynamic analysis of the interactions between a low-to-medium-speed maglev train and a bridge: Field test results of two typical bridges vol.232, pp.7, 2018, https://doi.org/10.1177/0954409718758502
- Vibration Response Analysis of Simply Supported Box Girder Bridge-Maglev Train in Accelerated Test of Changsha Maglev Express vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/9563747
- Dynamic interaction analysis of bridges induced by a low-to-medium-speed maglev train vol.26, pp.21, 2012, https://doi.org/10.1177/1077546320910006