DOI QR코드

DOI QR Code

Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures

  • Aung, Nyi Nyi (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Ye, Jihong (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Masters, F.J. (Department of Civil and Coastal Engineering, University of Florida)
  • Received : 2010.06.18
  • Accepted : 2011.07.20
  • Published : 2012.05.25

Abstract

Multivariate simulation is necessary for cases where non-Gaussian processes at spatially distributed locations are desired. A simulation algorithm to generate non-Gaussian wind pressure fields is proposed. Gaussian sample fields are generated based on the spectral representation method using wavelet transforms method and then mapped into non-Gaussian sample fields with the aid of a CDF mapping transformation technique. To illustrate the procedure, this approach is applied to experimental results obtained from wind tunnel tests on the domes. A multivariate Gaussian simulation technique is developed and then extended to multivariate non-Gaussian simulation using the CDF mapping technique. It is proposed to develop a new wavelet-based CDF mapping technique for simulation of multivariate non-Gaussian wind pressure process. The efficiency of the proposed methodology for the non-Gaussian nature of pressure fluctuations on separated flow regions of different rise-span ratios of domes is also discussed.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Bendat, J.S. and Piersol, A.G. (1986), Random data: Analysis and measurement procedures, 2nd Ed., New York, 86-125.
  2. Borgman, L.E. (1990), Irregular ocean waves: Kinematics and forces: the sea, (Eds., LeMehaute, B. and Hanes, D.M.), John Wiley and Sons, 121-167.
  3. Cai, G.Q. and Lin, Y.K. (1996), "Generation of non-Gaussian stationary stochastic processes", J. Phys. Rev. E, 91, 737-765.
  4. Daubechies, I. (1992), Ten lectures on wavelets, SIMA: Philadelpia, 17-48.
  5. Deodatis, G. and Micaletti, R.C. (2002), "Simulation of highly skewed non-Gaussian stochastic processes", J. Eng. Mech.- ASCE, 127(12), 1284-1295.
  6. Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1994), "Conditional simulation of non-Gaussian random-fields", Eng. Struct., 16(7), 558-563. https://doi.org/10.1016/0141-0296(94)90091-4
  7. Grigoriu, M. (1984), "Crossing of non-Gaussian translation processes", J. Eng. Mech.- ASCE, 110(4), 610-620. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(610)
  8. Grigoriu, M. (1993), "On the spectral representation method in simulation", Probabilist. Eng. Mech., 8(2), 75-90. https://doi.org/10.1016/0266-8920(93)90002-D
  9. Grigoriu, M. (1998), "Simulation of stationary non-Gaussian translation processes", J. Eng. Mech.- ASCE, 124(2), 121-126. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(121)
  10. Gurley, K.R. (1997), Modeling and simulation of non-Gaussian processes, PhD. Thesis, Notre Dame: University of Notre Dame. 2-15.
  11. Gurley, K.R. and Kareem, A. (1997a), "Analysis, interpretation, modeling and simulation of unsteady wind and pressure data", J. Wind Eng. Ind. Aerod., 69-71, 657-669. https://doi.org/10.1016/S0167-6105(97)00195-5
  12. Gurley, K. and Kareem, A. (1997b), "Application of wavelet transforms in signal characterization", Eng. Struct., 3, 855-875.
  13. Gurley, K.R. and Kareem, A. (1998a), "A conditional simulation of non-normal velocity/pressure fields", J. Wind Eng. Ind. Aerod., 77-78, 39-51. https://doi.org/10.1016/S0167-6105(98)00130-5
  14. Gurley, K. and Kareem, A. (1998b), "Simulation of correlated non-Gaussian pressure fields", J. Wind Eng. Ind. Aerod., 33(3), 309-317.
  15. Griguriu, M. (2007), "Parametric translation models for stationary non-Gaussian processes and fields", J. Sound Vib., 303(3-5), 428-439. https://doi.org/10.1016/j.jsv.2006.07.045
  16. Hoshiya, M., Noda, S. and Inada, H. (1998), "Estimation of conditional non-Gaussian translation stochastic fields", J. Eng. Mech.- ASCE, 124(4), 435-445. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(435)
  17. Huang, S.P., Phoon, K.K. and Quek, S.T. (2000), "Digital simulation of non-Gaussian stationary processes using Karhunen-Loeve expansion", Proceedings of the 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 1-6.
  18. Kumar, K.S. (1997), Simulation of fluctuation wind pressure on low building roofs, Ph.D Thesis, Canada: Concordia University, 135-165.
  19. Kumar, K.S. and Stathopoulos, T. (1998), "Power spectra of wind pressures on low building roofs", J. Wind Eng. Ind. Aerod., 74(76), 665-674.
  20. Kumar, K.S. and Stathopoulos, T. (1999), "Synthesis of non-Gaussian wind pressure time series on low building roofs", Eng. Struct., 21(12), 1086-1100. https://doi.org/10.1016/S0141-0296(98)00069-8
  21. Kitagawa, T. and Nomura, T. (2003), "A wavelet-based method to generate artificial wind fluctuation data", J. Wind Eng. Ind. Aerod., 91(1), 943-964. https://doi.org/10.1016/S0167-6105(03)00037-0
  22. Li, Chao, Li, Q.S., Huang, S.H., Fu, J.Y. and Xiao, Y.Q. (2010), "Large eddy simulation of wind loads on a large-span spatial lattice roof ", Wind Struct., 13(1), 57-82. https://doi.org/10.12989/was.2010.13.1.057
  23. Li, Y.S. and Kareem, A. (1997), "Simulation of multivariate nonstationary random processes: Hybrid DFT and digital filtering approach", J. Eng. Mech.- ASCE, 123(12), 1302-1310.
  24. Master, F.J. and Gurley, K.R. (2003), "Non-Gaussian simulation: cumulative distribution function map-based spectral correction", J. Eng. Mech.- ASCE, 129(12), 1418-1428. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1418)
  25. Masters, F.J. (2004), Measurement, modeling and simulation of ground-level tropical cyclone winds, PhD. Thesis, Florida: University of Florida, 27-59.
  26. Masters, F.J., Gurley, K. and Kopp, G.K. (2010), "Multivariate stoachastic simulation of wind pressure over lowrise structures through linear model interpolation", J. Wind Eng. Ind. Aerod., 98(4-5), 226-235. https://doi.org/10.1016/j.jweia.2009.10.018
  27. Nyi, N.A. and Ye, J.H. (2010), "Coherence of wind pressure on domes", J. Southeast University (English Edition), 26(1), 100-106.
  28. Priestley, M.B. (1967), "Power spectral analysis of non-stationary processes", J. Sound Vib., 6(1), 86-97. https://doi.org/10.1016/0022-460X(67)90160-5
  29. Popescu, R., Deodatis, G. and Prevost, J.H. (1998), "Simulation of homogeneous on-Gaussian stochastic vector fields", Probabilist. Eng. Mech., 13(1), 1-13. https://doi.org/10.1016/S0266-8920(97)00001-5
  30. Phoon, K.K., Haung, S.P. and Quek S.T. (2002), "Simulation of second-order processes using Karhunen-Loeve expansion", Comput. Struct., 80(12), 1049-1060. https://doi.org/10.1016/S0045-7949(02)00064-0
  31. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. https://doi.org/10.1016/0022-460X(72)90600-1
  32. Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng.- ASCE, 113(12), 2382-2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382)
  33. Shinozuka, M. and Deodatis, G. (1991), "Simulation of stochastic processes by spectral representation", J. ASEM Appl. Mech. Rev., 44(4), 191-203. https://doi.org/10.1115/1.3119501
  34. Shinozuka, M. and Deodatis, G. (1996), "Simulation of multi-dimensional Gaussian stoachastic fields by spectral representation", J. ASEM Appl. Mech. Rev., 49(1), 29-53. https://doi.org/10.1115/1.3101883
  35. Seong, S.H. and Peterka, J.A. (1997), "Computer simulation of non-Gaussian multiple wind pressure time series", J. Wind Eng. Ind. Aerod., 72, 95-105. https://doi.org/10.1016/S0167-6105(97)00243-2
  36. Sakamoto, S. and Ghanem, R. (2002), "Simulation of multi-dimensional non-Gaussian non-stationary random fields", Probabilist. Eng. Mech., 17(2), 167-176. https://doi.org/10.1016/S0266-8920(01)00037-6
  37. Steinwolf, A. (2006), "Random vibration testing beyond PSD limitations", J. Sound Vib., 32, 12-21.
  38. Steinwolf, A. and Stepten, A.R. (2006), "Non-Gaussian alaysis of turbulent boundary layer fluctuating pressure on aircraft skin panels", J. Aircraft, 42(6), 1662-1675.
  39. Su, Y. (2007), Characteristics of wind loading on long-span roofs in chinese, Ph.D Thesis, Harbin, Harbin Institute of Technology.
  40. Vanmarcke, E.H. and Fenton, G.A. (1991), "Conditioned simulation of local fields of earthquake ground motion", Struct. Saf., 10(1-3), 247-264. https://doi.org/10.1016/0167-4730(91)90018-5
  41. Yamazaki, F. and Shinozuka, M. (1998), "Digital generation of non-Gaussian stochastic fields", J. Eng. Mech - ASCE., 114(7), 1183-1197.
  42. Zeldin, B.A. and Spanos, P.D. (1996), "Random field representation and synthesis using wavelet bases", J. Appl. Mech.-T ASME, 63(12), 946-952. https://doi.org/10.1115/1.2787251
  43. Zhang, R.C. and Deodatis, G. (1996), "Seismic ground motion synthetics of the 1989 Loma Prieta earthquake", Earthq. Eng. Struct. D., 25(5), 465-481. https://doi.org/10.1002/(SICI)1096-9845(199605)25:5<465::AID-EQE563>3.0.CO;2-J
  44. Zou, Lianghao, Liang, Shuguo, Li, Q.S. and Zhao, Lin and Ge, Yaojun (2008), "Investigation of 3-D dynamic wind loads on lattice towers", Wind Struct., 11(4), 323-340. https://doi.org/10.12989/was.2008.11.4.323

Cited by

  1. Scheme and application of phase delay spectrum towards spatial stochastic wind fields vol.16, pp.5, 2013, https://doi.org/10.12989/was.2013.16.5.433
  2. Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction vol.18, pp.6, 2014, https://doi.org/10.12989/was.2014.18.6.693
  3. Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.549