DOI QR코드

DOI QR Code

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Received : 2010.11.11
  • Accepted : 2011.07.17
  • Published : 2012.05.25

Abstract

Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

Keywords

References

  1. Basu, R.I. and Vickery, B.J. (1983), "Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application", J. Wind. Eng. Ind. Aerod., 12(1), 75-97. https://doi.org/10.1016/0167-6105(83)90081-8
  2. Belver, A.V. (2009), Analysis of aeroelastic vibrations in slender structures under wind loads, Ph.D. Dissertation, University of Valladolid, Spain.
  3. Belver, A.V., Mediavilla, A.F., Iban, A.L. and Rossi. R. (2010), "Fluid-structure coupling analysis and simulation of a slender composite beam", Sci. Eng. Compos. Mater., 17(1), 47-77.
  4. Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder in a flowing field", Proceedings of the Royal Society, London Series A 227.
  5. Blevins, R.D. and Burton, T.E. (1976), "Fluid Forces Induced by Vortex Shedding", J. Fluid. Eng.-T ASME, 98(1), 19-26. https://doi.org/10.1115/1.3448196
  6. Braza, M., Chassaing, P. and Minh, H.H. (1986), "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder", J. Fluid Mech., 165, 79-130. https://doi.org/10.1017/S0022112086003014
  7. Codina, R. (2000), "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods", Comput. Method. Appl. M., 190(13-14), 1579-1599. https://doi.org/10.1016/S0045-7825(00)00254-1
  8. Codina, R. (2001), "Pressure stability in fractional step finite element methods for incompressible flows", J. Comput. Phys., 170(1), 112-140. https://doi.org/10.1006/jcph.2001.6725
  9. Codina, R. (2002), "Stabilized finite element approximation of transient incompressible flows using orthogonal subscales", Comput. Method. Appl. M., 191(39-40), 4295-4321. https://doi.org/10.1016/S0045-7825(02)00337-7
  10. Codina, R., Principe, J. and Avila, M. (2010), "Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling", Int. J. Numer. Method. H., 20(5) ,492-516. https://doi.org/10.1108/09615531011048213
  11. D'Asdia, P. and Noe, S. (1998), "Vortex induced vibration of reinforced concrete chimneys: in situ experimentation and numerical previsions", J. Wind. Eng. Ind. Aerod., 74-76, 765-776. https://doi.org/10.1016/S0167-6105(98)00069-5
  12. Dadvand, P., Rossi, R. and Onate, E. (2010), "An object-oriented environment for developing finite element codes for multi-disciplinary applications", Arch. Comput. Method. E., 17(3), 253-297. https://doi.org/10.1007/s11831-010-9045-2
  13. Dawes, W.N. (1993), "Simulating unsteady turbomachinery flows on unstructured meshes which adapt both in time and space", Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Ohio, USA, May.
  14. Donea, J. and Huerta, A. (2003), Finite element methods for flow problems, Wiley: Chichester.
  15. Dyrbye, C. and Hansen, S.O. (1997), Wind loads on structures, J. Wiley & Sons, Chichester, England.
  16. Feng, C.C. (1968), The measurement of vortex-induced effects in flow past a stationary and oscillating circular cylinder and d-section cylinders, Master's Thesis, Universidad de British Columbia, Vancouver, Canada.
  17. Forster, C. (2007), Robust methods for fluid-structure interaction with stabilized finite elements, PhD thesis, Stuttgar.
  18. Fujarra, A.L.C., Pesce, C.P., Flemming, F. and Williamson, C.H.K. (2001), "Vortex-induced vibration of a flexible cantilever", J. Fluid. Struct., 15(3-4), 651-658. https://doi.org/10.1006/jfls.2000.0368
  19. Gorski, P. (2009), "Some aspects of the dynamic cross-wind response of tall industrial chimney", Wind Struct., 12(3), 259-279. https://doi.org/10.12989/was.2009.12.3.259
  20. Gorski, P. and Chmielewski, T. (2008), "A comparative study of along and cross-wind responses of a tall chimney with and without flexibility of soil", Wind Struct., 11(2), 121-135. https://doi.org/10.12989/was.2008.11.2.121
  21. Hansen, S.O. (1981), "Cross-wind vibrations of a 130-m tapered concrete chimney", J. Wind. Eng. Ind. Aerod., 8(4-5), 145-155. https://doi.org/10.1016/0167-6105(81)90015-5
  22. Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator of vortex-induced vibration", J. Eng. Mech.- ASCE, 96(5), 577-591.
  23. Idelsohn, S.R., Del Pin, F., Rossi, R. and Onate, E. (2009), "Fluid-structure interaction problems with strong addedmass effect", Int. J. Numer. Meth. Eng., 80(10), 1261-1294. https://doi.org/10.1002/nme.2659
  24. Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 33(2), 81-94. https://doi.org/10.1007/s00466-003-0502-8
  25. Kalktsis, L., Triantafyllou, G.S. and Ozbas, M. (2007), "Excitation, inertia, and drag forces on a cylinder vibrating transversely to a steady flow", J. Fluid. Struct., 23(1), 1-21. https://doi.org/10.1016/j.jfluidstructs.2006.08.006
  26. Kitagawa, T., Fujino, Y. and Kimura, K. (1999), "Effects of free end condition on end-cell induced vibration", J. Fluid. Struct., 13(4), 499-518. https://doi.org/10.1006/jfls.1999.0214
  27. Kwok, C.S. (1981), "Wind-induced lock-in excitation of tall structures", J. Eng. Mech.- ASCE, 107(1), 57-72.
  28. Lankadasu, A. and Vengadesan, S. (2010), "Large eddy simulation of bluff body wake in planar shear flow", Int. J. Numer. Meth. Fl., 64(6), 676-688.
  29. Lopes, A.V., Cunha, A. and Simoes, L.M.C. (2004), "Modelo computacional de analise aeroelastica das condicoes de utilizacao de estructuras esbeltas", Proceedings of the Congresso de Metodos Computacionais em Engenharia, Lisboa, Portugal, May.
  30. Lucor, D., Imas, L. and Karniadakis, G.E. (2001), "Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows". J. Fluid. Struct., 15(6), 887-887. https://doi.org/10.1006/jfls.2000.0401
  31. Mediavilla, A.F., Garcia, J.A.G. and Belver, A.V. (2007), "One-dimensional model for the analysis of thinwalled composite beams", Rev. Int. Metod. Numer., 23(2), 225-242.
  32. Meneghini, J.R., Saltara, F., Fregonesi, R.D., Yamamoto, C.T., Casaprima, E. and Ferrari, J.A. (2004), "Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields", Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-3), European Journal of Mechanics B-Fluids, 23(1), 51-63. https://doi.org/10.1016/j.euromechflu.2003.09.006
  33. Nieto, F., Hernandez, S., Jurado, J.A. and, Baldomir A. (2010), "CFD practical application in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4), 309-326. https://doi.org/10.12989/was.2010.13.4.309
  34. Norberg, C. (2001), "Flow around a circular cylinder: aspects of fluctuating lift", J. Fluid. Struct., 15 (3-4), 459-469. https://doi.org/10.1006/jfls.2000.0367
  35. Onate, E., Valls, A. and Garcia, J. (2007), "Computation of turbulent flows using a finite calculus-finite element formulation", Int. J. Numer. Meth. Eng., 54(6-8), 609-637. https://doi.org/10.1002/fld.1476
  36. Prasanth, T. K., Behara, S., Singh, S.P., Kumar, R. and Mittal, S. (2006), "Effect of blockage on vortex-induced vibrations at low Reynolds numbers", J. Fluid. Struct., 22(6-7), 865-876. https://doi.org/10.1016/j.jfluidstructs.2006.04.011
  37. Prasanth, T.K. and Mittal, S. (2008), "Vortex-induced vibrations of a circular cylinder at low Reynolds numbers", J. Fluid Mech., 594, 463-491.
  38. Principe, J, Codina, R. and Henke, F. (2010), "The dissipative structure of variational multiscale methods for incompressible flows", Comput. Method. Appl. M., 199(13-16), 791-801. https://doi.org/10.1016/j.cma.2008.09.007
  39. Repetto, M.P. and Solari, G. (2002), "Dynamic crosswind fatigue of slender vertical structures", Wind Struct., 5(6), 527-542. https://doi.org/10.12989/was.2002.5.6.527
  40. Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind. Eng. Ind. Aerod., 69-71, 55-75. https://doi.org/10.1016/S0167-6105(97)00147-5
  41. Rossi, R. and Onate, E. (2010), "Analysis of some partitioned algorithms for fluid-structure interaction", Eng. Comput., 27(1), 20-56. https://doi.org/10.1108/02644401011008513
  42. Selvam, R.P., Govindaswamy, S. and Bosch, H. (2002), "Aeroelastic analysis of bridges using FEM and moving grids", Wind Struct., 5(2), 257-266. https://doi.org/10.12989/was.2002.5.2_3_4.257
  43. Simiu, E. and Scanlan, R.H. (1978), Wind effects on structures: An introduction to wind engineering, John Wiley & Sons.
  44. Skop, R.A. and Griffin O.M. (1975), "On a theory for the vortex-excited oscillations of flexible cylindrical structures", J. Sound Vib., 41(2), 263-274. https://doi.org/10.1016/S0022-460X(75)80173-8
  45. Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows", J. Fluid. Struct., 15(6), 867-884. https://doi.org/10.1006/jfls.2000.0381
  46. Son, J.S. and Hanratty, T.J. (1996), "Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500", J. Fluid Mech., 35, 369-386.
  47. Vickery, B.J. and Basu, R.I. (1983), "Simplified approaches to the evaluation of the across-wind response of chimneys", J. Wind. Eng. Ind. Aerod., 14(1-3), 153-166. https://doi.org/10.1016/0167-6105(83)90019-3
  48. Vickery, B.J. and Basu, R.I. (1983), "Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions", J. Wind. Eng. Ind. Aerod., 12(1), 49-73. https://doi.org/10.1016/0167-6105(83)90080-6
  49. Vickery, B.J. and Clark, A.W. (1972), "Lift or across-wind response of tapered stacks", J. Struct. Division, 98(1), 1-20.
  50. Willden, R.H.J. and Graham, J.M.R. (2001), "Numerical prediction of VIV on long flexible circular cylinders", J. Fluid. Struct., 15(3-4), 659-669. https://doi.org/10.1006/jfls.2000.0359
  51. Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex induced vibrations", J. Wind. Eng. Ind. Aerod., 96(6-7), 713-735. https://doi.org/10.1016/j.jweia.2007.06.019

Cited by

  1. Maximum Vortex-Induced Vibrations of a square prism vol.16, pp.4, 2013, https://doi.org/10.12989/was.2013.16.4.341
  2. Maximum vortex-induced vibrations of a square prism vol.17, pp.1, 2013, https://doi.org/10.12989/was.2013.17.1.107
  3. Pseudo three-dimensional simulation of aeroelastic response to turbulent wind using Vortex Particle Methods vol.72, 2017, https://doi.org/10.1016/j.jfluidstructs.2017.04.001
  4. Enhanced Vortex Shedding in a 183 m Industrial Chimney vol.17, pp.7, 2014, https://doi.org/10.1260/1369-4332.17.7.951
  5. Numerical modelling for evaluating the TMD performance in an industrial chimney vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.263
  6. Monitoringgestützte Analyse von Schwingungsdämpfern in Turmbauwerken vol.95, pp.6, 2018, https://doi.org/10.1002/bate.201700083
  7. Analytical modeling of flexible structures for health monitoring under environmentally induced loads vol.231, pp.9, 2012, https://doi.org/10.1007/s00707-020-02712-9