References
- Basu, R.I. and Vickery, B.J. (1983), "Across-wind vibrations of structures of circular cross-section. Part II. Development of a mathematical model for full-scale application", J. Wind. Eng. Ind. Aerod., 12(1), 75-97. https://doi.org/10.1016/0167-6105(83)90081-8
- Belver, A.V. (2009), Analysis of aeroelastic vibrations in slender structures under wind loads, Ph.D. Dissertation, University of Valladolid, Spain.
- Belver, A.V., Mediavilla, A.F., Iban, A.L. and Rossi. R. (2010), "Fluid-structure coupling analysis and simulation of a slender composite beam", Sci. Eng. Compos. Mater., 17(1), 47-77.
- Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder in a flowing field", Proceedings of the Royal Society, London Series A 227.
- Blevins, R.D. and Burton, T.E. (1976), "Fluid Forces Induced by Vortex Shedding", J. Fluid. Eng.-T ASME, 98(1), 19-26. https://doi.org/10.1115/1.3448196
- Braza, M., Chassaing, P. and Minh, H.H. (1986), "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder", J. Fluid Mech., 165, 79-130. https://doi.org/10.1017/S0022112086003014
- Codina, R. (2000), "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods", Comput. Method. Appl. M., 190(13-14), 1579-1599. https://doi.org/10.1016/S0045-7825(00)00254-1
- Codina, R. (2001), "Pressure stability in fractional step finite element methods for incompressible flows", J. Comput. Phys., 170(1), 112-140. https://doi.org/10.1006/jcph.2001.6725
- Codina, R. (2002), "Stabilized finite element approximation of transient incompressible flows using orthogonal subscales", Comput. Method. Appl. M., 191(39-40), 4295-4321. https://doi.org/10.1016/S0045-7825(02)00337-7
- Codina, R., Principe, J. and Avila, M. (2010), "Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling", Int. J. Numer. Method. H., 20(5) ,492-516. https://doi.org/10.1108/09615531011048213
- D'Asdia, P. and Noe, S. (1998), "Vortex induced vibration of reinforced concrete chimneys: in situ experimentation and numerical previsions", J. Wind. Eng. Ind. Aerod., 74-76, 765-776. https://doi.org/10.1016/S0167-6105(98)00069-5
- Dadvand, P., Rossi, R. and Onate, E. (2010), "An object-oriented environment for developing finite element codes for multi-disciplinary applications", Arch. Comput. Method. E., 17(3), 253-297. https://doi.org/10.1007/s11831-010-9045-2
- Dawes, W.N. (1993), "Simulating unsteady turbomachinery flows on unstructured meshes which adapt both in time and space", Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Ohio, USA, May.
- Donea, J. and Huerta, A. (2003), Finite element methods for flow problems, Wiley: Chichester.
- Dyrbye, C. and Hansen, S.O. (1997), Wind loads on structures, J. Wiley & Sons, Chichester, England.
- Feng, C.C. (1968), The measurement of vortex-induced effects in flow past a stationary and oscillating circular cylinder and d-section cylinders, Master's Thesis, Universidad de British Columbia, Vancouver, Canada.
- Forster, C. (2007), Robust methods for fluid-structure interaction with stabilized finite elements, PhD thesis, Stuttgar.
- Fujarra, A.L.C., Pesce, C.P., Flemming, F. and Williamson, C.H.K. (2001), "Vortex-induced vibration of a flexible cantilever", J. Fluid. Struct., 15(3-4), 651-658. https://doi.org/10.1006/jfls.2000.0368
- Gorski, P. (2009), "Some aspects of the dynamic cross-wind response of tall industrial chimney", Wind Struct., 12(3), 259-279. https://doi.org/10.12989/was.2009.12.3.259
- Gorski, P. and Chmielewski, T. (2008), "A comparative study of along and cross-wind responses of a tall chimney with and without flexibility of soil", Wind Struct., 11(2), 121-135. https://doi.org/10.12989/was.2008.11.2.121
- Hansen, S.O. (1981), "Cross-wind vibrations of a 130-m tapered concrete chimney", J. Wind. Eng. Ind. Aerod., 8(4-5), 145-155. https://doi.org/10.1016/0167-6105(81)90015-5
- Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator of vortex-induced vibration", J. Eng. Mech.- ASCE, 96(5), 577-591.
- Idelsohn, S.R., Del Pin, F., Rossi, R. and Onate, E. (2009), "Fluid-structure interaction problems with strong addedmass effect", Int. J. Numer. Meth. Eng., 80(10), 1261-1294. https://doi.org/10.1002/nme.2659
- Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 33(2), 81-94. https://doi.org/10.1007/s00466-003-0502-8
- Kalktsis, L., Triantafyllou, G.S. and Ozbas, M. (2007), "Excitation, inertia, and drag forces on a cylinder vibrating transversely to a steady flow", J. Fluid. Struct., 23(1), 1-21. https://doi.org/10.1016/j.jfluidstructs.2006.08.006
- Kitagawa, T., Fujino, Y. and Kimura, K. (1999), "Effects of free end condition on end-cell induced vibration", J. Fluid. Struct., 13(4), 499-518. https://doi.org/10.1006/jfls.1999.0214
- Kwok, C.S. (1981), "Wind-induced lock-in excitation of tall structures", J. Eng. Mech.- ASCE, 107(1), 57-72.
- Lankadasu, A. and Vengadesan, S. (2010), "Large eddy simulation of bluff body wake in planar shear flow", Int. J. Numer. Meth. Fl., 64(6), 676-688.
- Lopes, A.V., Cunha, A. and Simoes, L.M.C. (2004), "Modelo computacional de analise aeroelastica das condicoes de utilizacao de estructuras esbeltas", Proceedings of the Congresso de Metodos Computacionais em Engenharia, Lisboa, Portugal, May.
- Lucor, D., Imas, L. and Karniadakis, G.E. (2001), "Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows". J. Fluid. Struct., 15(6), 887-887. https://doi.org/10.1006/jfls.2000.0401
- Mediavilla, A.F., Garcia, J.A.G. and Belver, A.V. (2007), "One-dimensional model for the analysis of thinwalled composite beams", Rev. Int. Metod. Numer., 23(2), 225-242.
- Meneghini, J.R., Saltara, F., Fregonesi, R.D., Yamamoto, C.T., Casaprima, E. and Ferrari, J.A. (2004), "Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields", Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-3), European Journal of Mechanics B-Fluids, 23(1), 51-63. https://doi.org/10.1016/j.euromechflu.2003.09.006
- Nieto, F., Hernandez, S., Jurado, J.A. and, Baldomir A. (2010), "CFD practical application in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4), 309-326. https://doi.org/10.12989/was.2010.13.4.309
- Norberg, C. (2001), "Flow around a circular cylinder: aspects of fluctuating lift", J. Fluid. Struct., 15 (3-4), 459-469. https://doi.org/10.1006/jfls.2000.0367
- Onate, E., Valls, A. and Garcia, J. (2007), "Computation of turbulent flows using a finite calculus-finite element formulation", Int. J. Numer. Meth. Eng., 54(6-8), 609-637. https://doi.org/10.1002/fld.1476
- Prasanth, T. K., Behara, S., Singh, S.P., Kumar, R. and Mittal, S. (2006), "Effect of blockage on vortex-induced vibrations at low Reynolds numbers", J. Fluid. Struct., 22(6-7), 865-876. https://doi.org/10.1016/j.jfluidstructs.2006.04.011
- Prasanth, T.K. and Mittal, S. (2008), "Vortex-induced vibrations of a circular cylinder at low Reynolds numbers", J. Fluid Mech., 594, 463-491.
- Principe, J, Codina, R. and Henke, F. (2010), "The dissipative structure of variational multiscale methods for incompressible flows", Comput. Method. Appl. M., 199(13-16), 791-801. https://doi.org/10.1016/j.cma.2008.09.007
- Repetto, M.P. and Solari, G. (2002), "Dynamic crosswind fatigue of slender vertical structures", Wind Struct., 5(6), 527-542. https://doi.org/10.12989/was.2002.5.6.527
- Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind. Eng. Ind. Aerod., 69-71, 55-75. https://doi.org/10.1016/S0167-6105(97)00147-5
- Rossi, R. and Onate, E. (2010), "Analysis of some partitioned algorithms for fluid-structure interaction", Eng. Comput., 27(1), 20-56. https://doi.org/10.1108/02644401011008513
- Selvam, R.P., Govindaswamy, S. and Bosch, H. (2002), "Aeroelastic analysis of bridges using FEM and moving grids", Wind Struct., 5(2), 257-266. https://doi.org/10.12989/was.2002.5.2_3_4.257
- Simiu, E. and Scanlan, R.H. (1978), Wind effects on structures: An introduction to wind engineering, John Wiley & Sons.
- Skop, R.A. and Griffin O.M. (1975), "On a theory for the vortex-excited oscillations of flexible cylindrical structures", J. Sound Vib., 41(2), 263-274. https://doi.org/10.1016/S0022-460X(75)80173-8
- Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows", J. Fluid. Struct., 15(6), 867-884. https://doi.org/10.1006/jfls.2000.0381
- Son, J.S. and Hanratty, T.J. (1996), "Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500", J. Fluid Mech., 35, 369-386.
- Vickery, B.J. and Basu, R.I. (1983), "Simplified approaches to the evaluation of the across-wind response of chimneys", J. Wind. Eng. Ind. Aerod., 14(1-3), 153-166. https://doi.org/10.1016/0167-6105(83)90019-3
- Vickery, B.J. and Basu, R.I. (1983), "Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions", J. Wind. Eng. Ind. Aerod., 12(1), 49-73. https://doi.org/10.1016/0167-6105(83)90080-6
- Vickery, B.J. and Clark, A.W. (1972), "Lift or across-wind response of tapered stacks", J. Struct. Division, 98(1), 1-20.
- Willden, R.H.J. and Graham, J.M.R. (2001), "Numerical prediction of VIV on long flexible circular cylinders", J. Fluid. Struct., 15(3-4), 659-669. https://doi.org/10.1006/jfls.2000.0359
- Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex induced vibrations", J. Wind. Eng. Ind. Aerod., 96(6-7), 713-735. https://doi.org/10.1016/j.jweia.2007.06.019
Cited by
- Maximum Vortex-Induced Vibrations of a square prism vol.16, pp.4, 2013, https://doi.org/10.12989/was.2013.16.4.341
- Maximum vortex-induced vibrations of a square prism vol.17, pp.1, 2013, https://doi.org/10.12989/was.2013.17.1.107
- Pseudo three-dimensional simulation of aeroelastic response to turbulent wind using Vortex Particle Methods vol.72, 2017, https://doi.org/10.1016/j.jfluidstructs.2017.04.001
- Enhanced Vortex Shedding in a 183 m Industrial Chimney vol.17, pp.7, 2014, https://doi.org/10.1260/1369-4332.17.7.951
- Numerical modelling for evaluating the TMD performance in an industrial chimney vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.263
- Monitoringgestützte Analyse von Schwingungsdämpfern in Turmbauwerken vol.95, pp.6, 2018, https://doi.org/10.1002/bate.201700083
- Analytical modeling of flexible structures for health monitoring under environmentally induced loads vol.231, pp.9, 2012, https://doi.org/10.1007/s00707-020-02712-9