References
- Chen, Y.Y., Meng, X.D., Tong, W.L., Jia, L.J., Zhou, D. and Zhong, Y.H. (2009), "An experimental study on the seismic behavior of the steel column-beam-brace joints of the Guangzhou TV Tower", China Civil Eng. J., 42(8), 9-16.
- Dong, C. (1998), "Generalized genetic algorithm", Exploration Nature, 63(17), 33-37.
- Field, R.V.J. and Grogoriu, M. (2006), "Optimal design of sensor networks for vehicle detection, classification and monitoring", Probab. Eng. Mech., 21(1), 305-316. https://doi.org/10.1016/j.probengmech.2005.11.003
- Friswell, M.I., Garvey, S.D. and Penny, J.E.T. (1995), "Model reduction using dynamic and iterated IRS techniques", J. Sound Vib., 186(2), 311-323. https://doi.org/10.1006/jsvi.1995.0451
- Gu, M., Huang, P., Zhou, X.Y., Zhu, L.D. and Pan, H.M. (2009), "Wind tunnel force balance test and windinduced response of the Guangzhou New TV Tower structure I, wind tunnel test", China Civil Eng. J., 42(7), 8-13.
- Guo, Y.L., Liu, L.Y., Wang, Y.H., Lin, B., Dong, Q.L. and Dou, C. (2008), "Stability behavior of the waist portion of the Guangzhou New TV Tower", China Civil Eng. J., 41(8), 54-64.
- Guo, Y.L., Liu, L.Y., Wang, Y.H., Lin, B., Pan, H.M. and Liang, S. (2009), "Experimental investigation of the waist portion of the Guangzhou New TV Tower", China Civil Eng. J., 41(8), 43-53.
- Guo, Y.L., Wang, Y.H., Liu, L.Y. and Lin, B. (2009), "Interaction bearing capacity of the waist area of the Guangzhou New TV Tower", China Civil Eng. J., 42(7), 1-7.
- Guo, Y.L., Wang, Y.H., Liu, L.Y., Lin, B., Pan, H.M. and Liang, S. (2010), "Experimental studies on multicolumn out-plane buckling in bottom open-space region of the Guangzhou New TV Tower", J. Build. Struct., 31(1), 78-86.
- Guo, Y.L. and Wang, Y.H. (2010), "Analytical studies on design method and application of multi-column outplane buckling in open-space region of the Guangzhou New TV Tower", J. Build. Struct., 31(1), 87-93.
- Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", Am. Aeronaut. J., 3(2), 380.
- Holland, J.H. (1975), Adaption in natural and artificial systems, Ann Arbor, University of Michigan Press, 1975.
- Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dynam., 14(2), 251-259. https://doi.org/10.2514/3.20635
- Kammer, D.C. and Tinker, M.L. (2004), "Optimal placement of triaxial accelerometers for modal vibration tests", Mech. Eng. Signal Pr., 18(1), 29-41. https://doi.org/10.1016/S0888-3270(03)00017-7
- Kuhar, E.J. and Stahle, C.V. (1974), "Dynamic transformation method for modal synthesis", Am. Aeronaut. J., 12(5), 672-678.
- Li, D.S., Li, H.N. and Fritzec, C.P. (2007), "The connection between effective independence and modal kinetic energy methods for sensor placement", J. Sound Vib., 305(4-5), 945-955. https://doi.org/10.1016/j.jsv.2007.05.004
- Lin, Y.S.F. and Chiu, P.K. (2005), "A near optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks", IEEE Commun. Lett., 9(1), 43-45. https://doi.org/10.1109/LCOMM.2005.1375236
- Liu, L.Y., Guo, Y.L., Wang, Y.H. and Lin, B. (2009), "Influence of the horizontal bracings on the stability of the exterior steel frame in the waist region of the Guangzhou New TV Tower", China Civil Eng. J., 42(5), 61-68.
- Maul, W.A., Kopasakis, G., Santi, L.M., Sowers, T.S. and Chicatelli, A. (2007), "Sensor selection and optimization for health assessment of aerospace systems", Proceedings of the NASA/TM-2007-214822, Rohnert Park, California, May 7-10.
- Meo, M. and Zumpano, G. (2005), "On the optimal sensor placement techniques for a bridge structure", Eng. Strucut., 27(10), 1488-1497. https://doi.org/10.1016/j.engstruct.2005.03.015
- Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct Health Monit., 16(1), 73-98. https://doi.org/10.1002/stc.303
- Ni, Y.Q., Xia, Y., Lin, W., Chen, W.H. and Ko, J.M. (2012), "SHM benchmark for high-rise structures - a reducedorder finite element model and field measurement data", Smart Struct. Syst., in this issue.
- O'Callahan, J.C. (1989), "A procedure for an improved reduced system IRS model", Proceedings of the 6th International Modal Analysis Conference, Las Vegas, USA.
- Pan, H.M., Zhou, F.L. and Liang, S. (2008), "Shaking table test for the structural model of Guangzhou New TV Tower", J. Eng. Mech. -ASCE, 25(11), 78-85.
- Papadimitriou, C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound Vib., 278(4-5), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
- Salama, M., Rose T. and Garba, J. (1987), "Optimal placement of excitations and sensors for verification of large dynamical systems", Proceedings of the 28th Structures, Structural Dynamics, and Materials Conference, Monterey, CA, USA.
- Tan, P., Bu, G.X. and Zhou, F.L. (2009), "Study on wind-resistant dynamic reliability of TMD with limited spacing", J. Vib. Shock, 28(6), 42-45. https://doi.org/10.3969/j.issn.1000-3835.2009.06.009
- Tong, W.L, Wang, X.Y., Chen, Y.Y., Meng, X.D., Wang, W.M. and Xiong, W. (2010), "Bending rigidity of welded beam-column-brace-bracket in Guangzhou New TV Tower", China Civil Eng. J., 43(7), 22-28.
- Wang, X.L., Qu, W.L. and Liu, H. (2007), "Finite element analysis on dynamic characteristics of super high tower in Guangzhou", J. Wuhan Univ. Technol., 29(1), 142-144. https://doi.org/10.3321/j.issn:1671-4431.2007.01.040
- Xiong, W., Zhou, D., Wang, W.M., Xu, Y. and Yu, Y.H. (2010), "Design and analysis of antenna to main structural connection of the Guangzhou New TV Tower", J. Build. Struct., 31(1), 94-100.
- Yi, T.H., Li, H.N. and Gu, M. (2011), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm", Math. Probl. Eng., Article ID 395101, 1-11.
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec., 20(7), 881-900. https://doi.org/10.1002/tal.712
- Zhou, X.Y., Gu, M., Zhu, L.D., Huang, P. and Pan, H.D. (2009), "Wind tunnel force balance test and windinduced response of the Guangzhou New TV Tower structure I, analysis of wind-induced responses", China Civil Eng. J., 42(7), 14-20.
Cited by
- Experimental and numerical investigations on seismic performance of a super tall steel tower vol.7, pp.4, 2014, https://doi.org/10.12989/eas.2014.7.4.571
- Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.981
- Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.355
- A reduced modal parameter based algorithm to estimate excitation forces from optimally placed accelerometers vol.25, pp.3, 2017, https://doi.org/10.1080/17415977.2016.1169276
- Real-time simultaneous identification of structural systems and unknown inputs without collocated acceleration measurements based on MEKF-UI 2017, https://doi.org/10.1016/j.measurement.2017.07.001
- Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge vol.115, 2018, https://doi.org/10.1016/j.measurement.2017.10.036
- Data fusion based EKF-UI for real-time simultaneous identification of structural systems and unknown external inputs vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.02.002
- Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.409
- Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy vol.85, 2018, https://doi.org/10.1016/j.autcon.2017.10.025
- Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm vol.24, pp.8, 2017, https://doi.org/10.1002/stc.1958
- Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach vol.23, pp.11, 2016, https://doi.org/10.1002/stc.1840
- Reviews on innovations and applications in structural health monitoring for infrastructures vol.1, pp.1, 2014, https://doi.org/10.12989/smm.2014.1.1.001
- Optimal sensor placement for structural response estimation vol.21, pp.10, 2014, https://doi.org/10.1007/s11771-014-2387-4
- 3D sensor placement strategy using the full-range pheromone ant colony system vol.25, pp.7, 2016, https://doi.org/10.1088/0964-1726/25/7/075003
- A Method of Data Recovery Based on Compressive Sensing in Wireless Structural Health Monitoring vol.2014, 2014, https://doi.org/10.1155/2014/546478
- Wireless sensor placement for structural monitoring using information-fusing firefly algorithm vol.26, pp.10, 2017, https://doi.org/10.1088/1361-665X/aa7930
- A strain measurement model using a limited number of sensors for steel beam structures subjected to uncertain loadings vol.26, pp.11, 2015, https://doi.org/10.1088/0957-0233/26/11/115007
- Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
- A Whole-Range S–N Curve for Fatigue Assessment of Steel Orthotropic Bridge Decks 2018, https://doi.org/10.1142/S0219455418400102
- Structural Monitoring Techniques for the Largest Excavation Section Subsea Tunnel: Xiamen Xiang’an Subsea Tunnel vol.30, pp.2, 2017, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000594
- Dual-type sensor placement optimization by fully utilizing structural modal information pp.2048-4011, 2019, https://doi.org/10.1177/1369433218799151
- Blind Modal Identification Using Limited Sensors through Modified Sparse Component Analysis by Time-Frequency Method vol.33, pp.9, 2018, https://doi.org/10.1111/mice.12372
- Spurious mode distinguish by modal response contribution index in eigensystem realization algorithm vol.27, pp.12, 2018, https://doi.org/10.1002/tal.1491
- New Representative Temperature for Performance Alarming of Bridge Expansion Joints through Temperature-Displacement Relationship vol.23, pp.7, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001258
- Clustering Number Determination for Sparse Component Analysis during Output-Only Modal Identification vol.145, pp.1, 2019, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001557
- A multitype sensor placement method for the modal estimation of structure vol.21, pp.4, 2012, https://doi.org/10.12989/sss.2018.21.4.407
- Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge vol.21, pp.5, 2012, https://doi.org/10.12989/sss.2018.21.5.549
- Computational methodologies for optimal sensor placement in structural health monitoring: A review vol.19, pp.4, 2012, https://doi.org/10.1177/1475921719877579
- Experimental validation of the proposed extended Kalman filter with unknown inputs algorithm based on data fusion vol.39, pp.4, 2012, https://doi.org/10.1177/1461348419868860
- Optimal Sensor Placement for Laminated Composite and Steel Cantilever Beams by the Effective Independence Method vol.31, pp.1, 2021, https://doi.org/10.1080/10168664.2019.1704202
- Complex frequency identification using real modal shapes for a structure with proportional damping vol.36, pp.10, 2021, https://doi.org/10.1111/mice.12676
- Structure-acoustic simulation using the modal expansion method and the optimum sensor placement vol.43, pp.12, 2012, https://doi.org/10.1007/s40430-021-03297-7