DOI QR코드

DOI QR Code

A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic

  • Mukherjee, Sujoy (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science)
  • 투고 : 2010.10.07
  • 심사 : 2012.06.04
  • 발행 : 2012.07.25

초록

A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.

키워드

참고문헌

  1. Ansari, S.A., Zbikowski, R. and Knowles, K. (2006), "Aerodynamic modelling of insect-like flapping flight for micro air vehicles", Prog. Aerosp. Sci., 42(2), 129-172. https://doi.org/10.1016/j.paerosci.2006.07.001
  2. Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exper. Bio., 116(1), 79-107.
  3. Bao, L., Hu, J.S., Yu, Y.L., Cheng, P., Xu, B.Q. and Tong, B.G. (2006), "Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion", Appl. Math. Mech.- Eng., 27(6), 741-748. https://doi.org/10.1007/s10483-006-0604-1
  4. Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronautical Quarterly, 25, 129-142. https://doi.org/10.1017/S0001925900006892
  5. Chandar, D.D.J. and Damodaran, M. (2010), "Computation of unsteady low Reynolds number free-flight aerodynamics of flapping wings", J. Aircraft, 47(1), 141-150. https://doi.org/10.2514/1.44456
  6. Chopra, I. (2002), "Review of state of art of smart structures and integrated systems", AIAA J., 40(11), 2145- 2187. https://doi.org/10.2514/2.1561
  7. Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S. and Huang, Z. (2008), "Coupled piezoelectric fans with two degree of freedom motion for the application of flapping wing micro aerial vehicles", Sensor. Actuat. A - Phys., 147(2), 607-612. https://doi.org/10.1016/j.sna.2008.06.017
  8. Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S., Whatmore, R.W. and Huang, Z. (2009), "Development of piezoelectric fans for flapping wing application", Sensor. Actuat. A - Phys., 149(1), 136-142. https://doi.org/10.1016/j.sna.2008.10.004
  9. Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exper. Bio., 206(17), 2989-2997. https://doi.org/10.1242/jeb.00524
  10. Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intell. Mater. Syst. Struct., 13(9), 611-615. https://doi.org/10.1106/104538902032463
  11. DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
  12. Dickinson, M.H., Lehmann, F.O. and Sane, S.P. (1999), "Wing rotation and the aerodynamic basis of insect flight", Science, 284(5422), 1954-1960. https://doi.org/10.1126/science.284.5422.1954
  13. Ganguli, R., Gorb, S., Lehmann, F.O., Mukherjee, S. and Mukherjee, S. (2010), "An experimental and numerical study of Calliphora wing structure", Exp. Mech., 50(8), 1183-1197. https://doi.org/10.1007/s11340-009-9316-8
  14. Hsieh, S.R., Shaw, S.W. and Pierre, C. (1994), "Normal modes for large amplitude vibration of a cantilever beam", Int. J. Solids Struct., 31(40), 1981-2014. https://doi.org/10.1016/0020-7683(94)90203-8
  15. Issac, K.K and Agrawal, S.K. (2007), "An investigation into the use of springs and wing motions to minimize the power expended by a pigeon-sized mechanical bird for steady flight", J. Mech. Design., 129(4), 381-389. https://doi.org/10.1115/1.2429696
  16. Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chinese Aeronaut. J., 21(5), 402-410. https://doi.org/10.1016/S1000-9361(08)60052-7
  17. Kim, D.K., Han, J.H. and Kwon, K.J. (2009), "Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators", Smart Mater. Struct., 18(2), 024008. https://doi.org/10.1088/0964-1726/18/2/024008
  18. Kim, D.K., Kim, H.I., Han, J.H. and Kwon, K.J. (2008), "Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites", J. Intell. Mater. Syst. Struct., 19(3), 423-431. https://doi.org/10.1177/1045389X07083618
  19. Kim, W.K., Ko, J.W., Park, H.C. and Byun, D. (2009), "Effects of corrugation of the dragonfly wing on gliding performance", J. Theor. Biol., 260(4), 523-530. https://doi.org/10.1016/j.jtbi.2009.07.015
  20. Kim, D.K., Lee, J.S. and Han, J.H. (2011), "Improved aerodynamic model for efficient analysis of flapping wing flight", AIAA J., 49(4), 868-872. https://doi.org/10.2514/1.J050556
  21. Lee, J.S., Kim, J.K., Kim, D.K. and Han, J.H. (2011), "Longitudinal flight dynamics of bio-inspired ornithopter considering fluid-structure interaction", AIAA J., 34(3), 667-677.
  22. Madangopal, R., Khan, Z.A. and Agrawal, S.K. (2005), "Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics", J. Mech. Design, 127(4), 809-816. https://doi.org/10.1115/1.1899690
  23. Mahmoodi, S.N. and Jalili, N. (2007), "Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers", Int. J. Nonlinear Mech., 42(4), 577-587. https://doi.org/10.1016/j.ijnonlinmec.2007.01.019
  24. McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE/ASME Trans. Mech., 11(2), 145-153. https://doi.org/10.1109/TMECH.2006.871089
  25. Mukherjee, S. and Ganguli, R. (2010), "Non-linear dynamic analysis of a piezoelectrically actuated flapping wing", J. Intell. Mater. Syst. Struct., 21(12), 1157-1167. https://doi.org/10.1177/1045389X10378776
  26. Nayfeh, A.H. (1973), Perturbation methods, Wiley, New York.
  27. Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear oscillations, Wiley, NewYork.
  28. Nguyen, V.Q., Syaifuddin, M., Park, H.C., Byun, D.Y., Goo, N.S. and Yoon, K.J. (2008), "Characteristics of an insect-mimicking flapping system actuated by a unimorph piezoceramic actuator", J. Intell. Mater. Syst. Struct., 19(10), 1185-1193. https://doi.org/10.1177/1045389X07084203
  29. Nguyen, V.Q., Park, H.C., Goo, N.S. and Byun, D.Y. (2010), "Characteristics of a Beetle's free flight and a flapping-wing system that mimics Beetle flight", J. Bio. Eng., 7(1), 77-86. https://doi.org/10.1016/S1672-6529(09)60195-5
  30. Norberg, U.M. (1985), "Evolution of vertebrate flight: an aerodynamic model for the transient from gliding to active flight", Am. Nat., 126(3), 303-327. https://doi.org/10.1086/284419
  31. Pawar, P.M. and Jung, S.N. (2008), "Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system", Smart Mater. Struct., 17(6), 065009: 1-11.
  32. Philps, P.J. East, R.A. and Pratt, N.H. (1981), "An unsteady lifting-line theory of flapping wings with application to the forward flight of birds", J. Fluid Mech., 112(11), 97-125. https://doi.org/10.1017/S0022112081000311
  33. Raney, D.L. and Slominski, E.C. (2004), "Mechanization and control concepts for biologically inspired micro aerial vehicles", J. Aircraft, 41(6), 1257-1265. https://doi.org/10.2514/1.5514
  34. Rayner, J.M.V. (1979), "Vortex theory of animal flight. 2. Forward flight of birds", J. Fluid Mech., 91(4), 731-763. https://doi.org/10.1017/S0022112079000422
  35. Roget, B., Sitaraman, J., Harmon, R., Grauer, J., Hubbard, J. and Humbert, S. (2009), "Computational study of flexible wing ornithopter flight", J. Aircraft, 46(6), 2016-2031. https://doi.org/10.2514/1.43187
  36. Rosenfeld, N.C. and Wereley, N.M. (2009), "Time-periodic stability of a flapping insect wing structure in hover", J. Aircraft, 46(2), 450-464. https://doi.org/10.2514/1.34938
  37. Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135. https://doi.org/10.2514/1.28192
  38. Sitti, M. (2003), "Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax", IEEE-ASME Trans. Mech., 8(1), 26-36. https://doi.org/10.1109/TMECH.2003.809126
  39. Sunada, S., Zeng, L.J. and Kawachi, K. (1998), "The relationship between dragonfly wing structure and torsional deformation", J. Theor. Biol., 193(1), 39-45. https://doi.org/10.1006/jtbi.1998.0678
  40. Syaifuddin, M., Park, H.C. and Goo, N.S. (2006), "Design and evaluation of a LIPCA-actuated flapping device", Smart Mater. Struct., 15(5), 1225-1230. https://doi.org/10.1088/0964-1726/15/5/009
  41. Thakkar, D. and Ganguli, R. (2006a), "Single-crystal piezoceramic actuation for dynamic stall suppression", Sensor. Actuat. A - phys., 128(1), 151-157. https://doi.org/10.1016/j.sna.2006.01.012
  42. Thakkar, D. and Ganguli, R. (2006b), "Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor", Smart Mater. Struct., 15(2), 331-341. https://doi.org/10.1088/0964-1726/15/2/013
  43. Toda, M. and Osaka, S. (1979), "Vibrational fan using the piezoelectric polymer PVF2", Proceedings of the IEEE, 67(8), 1171-1173. https://doi.org/10.1109/PROC.1979.11419
  44. VandenBerg, C. and Ellington, C.P. (1997), "The vortex wake of a 'hovering' model hawkmoth", Philos. T. R. Soc. B., 352(1351), 317-328. https://doi.org/10.1098/rstb.1997.0023
  45. Wait, S.M., Basak, S., Garimella, S.V. and Raman, A. (2007), "Piezoelectric fans using higher flexural modes for electronics cooling applications", IEEE T. Compon. Pack. T., 30(1), 119-128. https://doi.org/10.1109/TCAPT.2007.892084
  46. Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480. https://doi.org/10.2514/1.15899
  47. Yang, L.J., Hsu, C.K., Han, H.C. and Miao, J.M. (2009), "Light flapping micro aerial vehicle using electricaldischarge wire-cutting technique", J. Aircraft, 46(6), 1866-1874. https://doi.org/10.2514/1.38862
  48. Yao, K. and Uchino, K.J. (2001), "Analysis on a composite cantilever beam coupling a piezoelectric bimorph to an elastic blade", Sensor. Actuat. A - Phys., 89(3), 215-221. https://doi.org/10.1016/S0924-4247(00)00552-5
  49. Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., 4(1), 67-84. https://doi.org/10.12989/sss.2008.4.1.067
  50. Zeng, K., Pang, Y.S., Shen, L., Rajan, K.K. and Lim, L.C. (2008), "Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal", Mater. Sci. Eng. A., 472(1-2), 35-42. https://doi.org/10.1016/j.msea.2007.03.008
  51. Zhang, J. and Lu, X.Y. (2009), "Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight", Phys. Rev. E., 80(1), 017302-017304. https://doi.org/10.1103/PhysRevE.80.017302
  52. Zhang, R., Jiang, B. and Cao, W. (2002), "Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal", J. Mater. Sci. Lett., 21(23), 1877-1879. https://doi.org/10.1023/A:1021573431692