References
- Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003- 2006)", Smart Mater.Struct., 16(3), R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01
-
Bach, U., Lupo, D., Comte, P., Moser, J.E.,Weissortel, F., Salbeck, J., Spreitzer, H. and Gratzel, M. (1998), "Solid-state dyesensitized mesoporous
$TiO_2$ solar cells with high photon-to-electron conversion efficiencies", Nature, 395, 583-585. https://doi.org/10.1038/26936 - Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2001), Wind energy handbook , John Wiley & Sons.
- Clough, R.W. and Penzien, J. (1993), Dynamics of structures, New York: McGraw-Hill.
- Cullen, J.R., Teter, J.P., Wun-Fogle, M., Restorff, J.B. and Clark, A.E. (1997), "Magnetic and magnetoelastic studies of single crystal Tb06Dy04Zn at low temperatures", IEEE T. Mag., 33(5), 3949-3951. https://doi.org/10.1109/20.619625
- Den Hartog, J.P. (1947), Mechanical vibration, New York: McGraw-Hill.
- El-hami, M., Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D. and Ross, J.N. (2001), "Design and fabrication of a new vibration-based electromechanical power generator",Sensor. Actuat. A - PHYS, 92(1-3), 335-342. https://doi.org/10.1016/S0924-4247(01)00569-6
- Engel, T.G., Keawboonchuay, C. and Nunnally, W.C. (2000), "Energy conversion and high power pulse production using miniature piezoelectric compressors", IEEE T. Plasma Sci., 28(5), 1338-1341. https://doi.org/10.1109/27.901194
- Gao, R.X., Kazmer, D.O., Zhang, L., Theurer, C. and Cui, Y. (2004), "Self-powered sensing for mechanical system condition monitoring", Proceedings of the SPIE - Smart Structures and Materials 2004: Sensors and Smart Structures, Technologies for Civil, Mechanical and Aerospace Systems, 5391, 321-330.
- Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A - Phys, 110(1-3), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
- James, E.P., Tudor, M.J., Beeby, S.P., Harris, N.R., Glynne-Jones, P., Ross, J.N. and White, N.M. (2004), "An investigation of self-powered systems for condition monitoring applications", Sensor. Actuat. A - Phys, 110(1- 3), 171-176. https://doi.org/10.1016/j.sna.2003.10.057
- Keawboonchuay, C. and Engel, T.G. (2003), "Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions", IEEE T. Ultrason. Ferr., 50(10), 1377-1382. https://doi.org/10.1109/TUFFC.2003.1244755
- Lee, S., Youn, B.D. and Jung, B.C. (2009), "Robust segment-type energy harvester and its application to a wireless sensor", Smart Mater. Struct., 18(9), 095021. https://doi.org/10.1088/0964-1726/18/9/095021
- Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2005), "Piezoelectric energy harvesting device optimization by synchronous electric charge extraction", J. Intell. Mater. Syst. Struct., 16(10), 865-876. https://doi.org/10.1177/1045389X05056859
- Leland, E.S., Lai, E.M. and Wright, P.K. (2004), "A self-powered wireless sensor for indoor environmental monitoring", Proceedings of theWNCG 2004 Wireless Networking Symp., Austin, TX, October 2004.
- Leland, E.S. and Wright, P.K. (2006), "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload", Smart Mater. Struct., 15(5), 1413-1420. https://doi.org/10.1088/0964-1726/15/5/030
- Lesieutre, G.A., Ottman, G.K. and Hofmann, H.F. (2004), "Damping as a result of piezoelectric energy harvesting", J. Sound Vib., 269(3-5), 991-1001. https://doi.org/10.1016/S0022-460X(03)00210-4
- Lysne, P.C. and Percival, C.M. (1975), "Electric energy generation by shock compression of ferroelectric ceramics: normal-mode response of PZT 95/5", J. Appl. Phys., 46(4), 1519-1525. https://doi.org/10.1063/1.321803
- MacNeil, D.D. and Sargent, E.H. (2006), "Solution-processed infrared photovoltaic devices", Proceedings of the Design Automation Conference (IEEE Cat. No. 06CH37797) .
- Mitcheson, P.D., Green, T.C., Yeatman, E.M. and Holmes, A.S. (2004), "Architectures for vibration driven micropower generators", J. Microelectrom. S., 13(3), 429-440. https://doi.org/10.1109/JMEMS.2004.830151
- Morris, D.J., Youngsman, J.M., Anderson, M.J. and Bahr, D.F. (2008), "A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism", Smart Mater. Struct., 17(6), 065021. https://doi.org/10.1088/0964-1726/17/6/065021
- Munteanu, I., Guiraud, J., Roye, D., Bacha, S. and Bratcu, A.I. (2006), "Sliding mode energy-reliability optimization of a variable speed wind power system", Proceedings of the 2006 Int. Workshop on Variable Structure Systems, Alghero, Italy.
- Neugebauer, H., Brabec, C., Hummelen, J.C. and Sariciftci, N.S. (2000), "Stability and photodegradation mechanisms of conjugated polymer/fullerence plastic solar cells", Solar Energy Mater.Solar Cells, 61(1), 35-42. https://doi.org/10.1016/S0927-0248(99)00094-X
- Ottman, G.K., Hofmann, H.F., Bhatt, A.C. and Lesieutre, G .A. (2002), "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply", IEEE T. Power Electr., 17(5) 669-676. https://doi.org/10.1109/TPEL.2002.802194
- Paradiso, J.A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervas. Comput., 4(1) 18-27. https://doi.org/10.1109/MPRV.2005.9
- Qi, S., Shuttleworth, R., Oyadiji, S.O. and Wright, J. (2010), "Design of a multiresonant beam for broadband piezoelectric energy harvesting", Smart Mater. Struct., 19(9), 094009. https://doi.org/10.1088/0964-1726/19/9/094009
- Richard, C.D., Anderson, M.J., Bahr, D.F. and Richards, R.F. (2004), "Efficiency of energy conversion for devices containing a piezoelectric component", J. Micromech. Microeng., 14(5), 717-721. https://doi.org/10.1088/0960-1317/14/5/009
- Roundy, S, Wright, P.K. and Rabaey, J. (2003)," A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11) 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
- Roundy, S. (2005), "On the effectiveness of vibration-based energy harvesting", J. Intell. Mater. Syst. Struct., 16(10), 809-823. https://doi.org/10.1177/1045389X05054042
- Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K. and Sundararajan, V. (2005), "Improving power output for vibration-based energy scavengers", IEEE Pervas. Comput., 4(1) 28-36. https://doi.org/10.1109/MPRV.2005.14
- Shahruz, S.M.(2006), "Design of mechanical band-pass filters with large frequency bands for energy scavenging", Mechatronics, 16(9), 523-531. https://doi.org/10.1016/j.mechatronics.2006.04.003
- Shahruz, S.M. (2008), "Design of mechanical band-pass filters for energy scavenging: multi-degree-offreedom models", J. Vib. Control., 14(5), 753-768. https://doi.org/10.1177/1077546307083274
- Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems," Smart Mater.Struct., 15(6), 1499-1512. https://doi.org/10.1088/0964-1726/15/6/001
- Snyder, G.J., Lim J.R., Huang, C.K. and Fleurial, J.P. (2003), "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process", Nature Mater., 2(8), 528-531. https://doi.org/10.1038/nmat943
- Sodano, H. A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib., 36(3), 197-205. https://doi.org/10.1177/0583102404043275
- Sterken, T., Fiorini, P., Baert, K., Puers, T. and Borghs, G. (2003), "An electret-based electrostatic m-generator", Transducers, 3(2), 1291-1294.
- Tiwari, R., Kim, K.J. and Kim, S. (2008), "Ionic polymer-metal composite as smart velocity sensors and energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549
- Venkatasubramanian, R., Silivola, E., Colpitts, T. and O'Quinn, B. (2001), "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, 413(6856), 597-602. https://doi.org/10.1038/35098012
-
Xu, C.N., Akiyama, M., Sun, P. and Watanabe, T. (1997), "Novel approach to electrochromism in
$WO_3$ thin film using piezoelectric ceramics as power supply", Appl. Phys. Lett., 70(13), 1639-1640. https://doi.org/10.1063/1.118654 - Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech Microeng., 19(3), 035001. https://doi.org/10.1088/0960-1317/19/3/035001
- Yen, B.C. and Lang, J.H. (2006) "A variable-capacitance vibration-to-electric energy harvester", IEEE T. Circ. Syst. Vid., 53(2), 288-295. https://doi.org/10.1109/TCSI.2005.856043
- Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J. (1995), "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270(5243), 1789-1791. https://doi.org/10.1126/science.270.5243.1789
- Yu, G. and Heeger, A.J. (1995), "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions", J. Appl. Phys., 78(7), 4510-4515. https://doi.org/10.1063/1.359792
- Zhang, Y. and He, W. (2008), "Multi-mode piezoelectric energy harvesters for wireless sensor network based structural health monitoring", Proceedings of the SPIE vol 6934 69340Z.
- Zhou, W., Penamalli, G.R. and Zuo, L. (2012), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014. https://doi.org/10.1088/0964-1726/21/1/015014
- Zuo, L. (2009), "Effective and robust vibration control using series multiple tuned-mass dampers", J. Vib. Acoust., 131, 031003. https://doi.org/10.1115/1.3085879
Cited by
- Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers vol.16, pp.4, 2015, https://doi.org/10.12989/sss.2015.16.4.579
- Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes vol.14, pp.2, 2014, https://doi.org/10.12989/sss.2014.14.2.247