DOI QR코드

DOI QR Code

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe (Department of Mechanical Engineering, S.V. National Institute of Technology) ;
  • Saidane, Nitesh (Department of Mechanical Engineering, S.V. National Institute of Technology) ;
  • Singh, B.N. (Department of Aerospace Engineering, Indian Institute of Technology)
  • Received : 2011.07.31
  • Accepted : 2012.05.17
  • Published : 2012.06.25

Abstract

The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Keywords

References

  1. Akhras, G. and Li, W.C. (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method", Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/j.compstruct.2009.06.010
  2. Alibeigloo, A. and Madoliat, R. (2009), "Static analysis of cross-ply previous laminated plates with integrated surface piezoelectric layers using differential quadrature", Compos Struct., 88, 342-353. https://doi.org/10.1016/j.compstruct.2008.04.018
  3. Chamis, C.C. (1987), Simplified composite micromechanics equation for mechanical, thermal and moisture related properties, Engineers guide to compos Materials, materials park, OH: ASM Int.
  4. Chamis, C.C. and Sinclai, J.H. (1982), "Durability/life of fiber composite in hygro-thermal-mechanical environments", Proceedings of the compos. Material: testing and des, 6th conference, ASTM, STP, 787, 498-512.
  5. Chen, S., Lin, Z. and Zhang, Z. (1992), "Random variation analysis for larger scale structures with random parameters", Compos. Struct., 43, 247-254. https://doi.org/10.1016/0045-7949(92)90141-L
  6. Englested, S.P. and Reddy, J.N. (1994), "Probabilistic methods for the analysis of matrix composite", Compos. Sci. Technol., 50, 91-107. https://doi.org/10.1016/0266-3538(94)90129-5
  7. Ganesan, N. and Kadoli, R. (2003), "Buckling and dynamic analysis of piezothermoelastic composite cylindrical shell", Compos. Struct., 59(1), 45-60. https://doi.org/10.1016/S0263-8223(02)00230-1
  8. Gibson, R.F. (1994), Principles of composite material mechanics, McGraw-Hill Publications, New York.
  9. Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mech., 154(1-4), 129-140. https://doi.org/10.1007/BF01170703
  10. Gu, H., Chattopadhyay, A., Li, J. and Zhou, X. (2000), "A higher order temperature theory for coupled thermopiezoelectric-mechanical modeling of smart composites", Int. J. Solids Struct., 37(44), 6479-6497 https://doi.org/10.1016/S0020-7683(99)00283-8
  11. Kaminski, M. and Kleiber, M. (2000), "Perturbation based stochastic fnite element method for homogenization of two-phase elastic composites". Comput. Struct., 78(6), 811-826. https://doi.org/10.1016/S0045-7949(00)00116-4
  12. Klieber, M. and Hien, T.D. (1992), The stochastic nite element method, Wiley: Chichester
  13. Kulkarni, S.A. and Bajoria, K.M. (2003), "Finite element modeling of smart plates/shells using higher order shear deformation theory", Compos. Struct., 62(1), 41-50. https://doi.org/10.1016/S0263-8223(03)00082-5
  14. Kundu, C.K., Maiti D.K. and Sinha, P.K. (2007), "Post buckling analysis of smart laminated doubly curved shells", Compos. Struct., 81(3), 314-322. https://doi.org/10.1016/j.compstruct.2006.08.023
  15. Kundu, C.K. and Han, J.H. (2009), "Nonlinear buckling analysis of hygrothermoelastic composite shell panels using finite element method", Compos. Part B - Eng., 40(4), 313-332. https://doi.org/10.1016/j.compositesb.2008.12.001
  16. Lal, A., Singh, B.N. and Kumar, R. (2008), "Effect of random system properties on initial buckling of composite plates resting on elastic foundation", Int. J. Struct. Stab. D., 8(1), 103-130. https://doi.org/10.1142/S0219455408002570
  17. Lal, A. and Singh B.N. (2010), "Effect of uncertain system properties on thermo-elastic stability of laminated composite plates under non-uniform temperature distribution", Int. J. Appl. Mech., 2(2), 399-420. https://doi.org/10.1142/S175882511000055X
  18. Lal, A. and Singh B.N. (2009), "Thermal buckling response of laminated composite plate with random system properties", Int. J. Comput. Meth., 6(3), 1-25. https://doi.org/10.1142/S0219876209001693
  19. Lal, A., Singh B.N. and Kale, S. (2011), "Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygrothermomechanical loading", Compos. Struct., 93(4), 1187-1200. https://doi.org/10.1016/j.compstruct.2010.11.005
  20. Lal, A., Singh B.N. and Kumar, R. (2009), "Effects of random system properties on thermal buckling analysis of laminated composite plates", Comput. Struct., 87(17-18), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
  21. Lee H.J. and Saravanos, D.A. (2000), "A mixed multi-field finite element formulation for thermopiezoelectric composite shells", Int. J. Solids Struct., 37(36), 4949-4967. https://doi.org/10.1016/S0020-7683(99)00192-4
  22. Lee, I., Roh, J.H. and Oh, I.K. (2004), "Aerothermoelastic phenomena of aerospace and composite structures", J. Therm. Stresses, 26(6), 525-546.
  23. OH, I.K., Han, J.H. and Lee, I. (2000), "Post buckling and vibration characteristics of piezolaminated composite plate subjected to thermo-piezoelectric loads", J. Sound Vib., 233(1), 19-40. https://doi.org/10.1006/jsvi.1999.2788
  24. Oh, II-Kwon. (2005), "Thermopiezoelastic nonlinear dynamics of active piezolaminated plates", Smart Mater. Struct., 14(4), 823-845. https://doi.org/10.1088/0964-1726/14/4/042
  25. Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2006), "Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements", Int. J. Mech. Sci., 48(7), 780-798. https://doi.org/10.1016/j.ijmecsci.2006.01.002
  26. Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2007), "Stochastic finite element analysis buckling analysis of laminated with circular cutouts under uniaxial compression", Trans. ASME J. Appl. Mech., 74, 789-809.
  27. Panda, S.K. and Singh, B.N. (2009), "Thermal Post-buckling behavior of laminated composite cylindrical/ hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004
  28. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2009), "Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties", Int. J. Mech. Sci., 51(5), 363-371. https://doi.org/10.1016/j.ijmecsci.2009.03.003
  29. Pandey, P., Upadhyay, A.K. and Shukla, K.K. (2010), "Hygrothermal Post buckling response of laminated composite plates", Int. J. ASCE, 23(1), 1-13.
  30. Ray, M.C. and Mallik, N. (2004), "Finite element analysis of smart structures containing piezoelectric fiberreinforced composite actuator", AIAA J., 42(7), 1398-1405. https://doi.org/10.2514/1.4030
  31. Reddy, J.N. (1984), Energy and variational methods in applied mechanics, John Wiley & Sons.
  32. Reddy, J.N. and Liu, C.F. (1985), "A higher order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  33. Roy, T., Manikandan, P. and Chakraborty, D. (2010), "Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures", Finite Elem. Anal. Des., 46(9), 710-720. https://doi.org/10.1016/j.finel.2010.03.009
  34. Shen, H.S. (2010), "Buckling and post buckling of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators", Mech. Adv. Mater. Struct., 17, 268-279. https://doi.org/10.1080/15376490903556592
  35. Shen, H.S. (2002), "Thermal post buckling analysis of laminated cylindrical shell with piezoelectric actuators", Compos. struct., 55(1), 13-22. https://doi.org/10.1016/S0263-8223(01)00128-3
  36. Shen, H.S. (2002), "Hygrothermal effects on the post buckling of axially loaded shear deformable laminated cylindrical panels", Compos. Struct., 56(1), 73-85. https://doi.org/10.1016/S0263-8223(01)00187-8
  37. Shen, H.S. and Li, Q.S. (2002), "Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions", Int. J. Mech. Sci., 44(8), 1731-1754. https://doi.org/10.1016/S0020-7403(02)00056-5
  38. Shankara, C.A. and Iyengar, N.G.R. (1996), "A C0 element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152
  39. Singh, B.N. and Babu, J.B. (2009), "Thermal buckling of laminated composite conical shell panel with and without piezoelectric layer with random material properties", Int. J. Crashworthines, 14(1), 73-81. https://doi.org/10.1080/13588260802517352
  40. Singh, B.N., Iyengar, N.G.R. and Yadav, D. (2002), "A $C_0$ Probabilistic finite element for buckling of composite spherical panels with random material properties", J. Aerospace Eng., 15(2), 46-54. https://doi.org/10.1061/(ASCE)0893-1321(2002)15:2(46)
  41. Singh, B.N. and Lal, A. (2010), "Stochastic analysis of laminated composite plates on elastic foundation: the cases of post-buckling behavior and nonlinear free vibration", Int. J. Pres. Vess. Pip., 87(10), 559-574. https://doi.org/10.1016/j.ijpvp.2010.07.013
  42. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Stability analysis of laminated cylindrical panels with uncertain material properties", Compos. Struct., 54(1), 17-26. https://doi.org/10.1016/S0263-8223(01)00065-4
  43. Singh, B.N., Lal, A. and Kumar R. (2009), "Post buckling of laminated composite plate on elastic foundation with random system properties", Comm. Nonlinear Sci. Numer.Simul., 14(1), 284-300. https://doi.org/10.1016/j.cnsns.2007.08.005
  44. Singh, B.N. and Verma, V.K. (2009), "Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties", J. Reinf. Plast. Comp.., 28(4), 409-427 https://doi.org/10.1177/0731684407084991
  45. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Initial buckling of composite panels with random material properties", Compos. Struct., 53(1), 55-64. https://doi.org/10.1016/S0263-8223(00)00178-1
  46. Tauchert, T.R., Ashida, F., Noda, N., Adali, S. and Verijenko, V. (2000), "Developments in thermo-piezoelasticity with relevance to smart composite structures", Compos. Struct., 48(1-3), 31-38. https://doi.org/10.1016/S0263-8223(99)00070-7
  47. Taucher, T.R., Beresford, P.J. and Wilson, E.L. (1992), "Piezothermoelastic behavior of a laminate", J. Therm. Stresses, 15(1), 25-37. https://doi.org/10.1080/01495739208946118
  48. Tzou, H.S. and Tseng, C.I. (1991), "Distributed modal identification and vibration control of continua: Piezoelectric finite element formulation and analysis", Transactions - ASME, 113, 500-505. https://doi.org/10.1115/1.2912811
  49. Tzou, H.S. and Bao, Y. (1997), "Nonlinear piezothermoelasticity and multi-field actuations Part 1: nonlinear anisotropic piezothermoelastic shell laminates", J. Vib. Acoust., 119(3), 374-382. https://doi.org/10.1115/1.2889733
  50. Varelis, D. and Saravanos, D.A. (2004), "Coupled finite element for non-linear laminated piezoelectric composite shells with applications to buckling and post buckling behavior", Proceedingsl of the 45th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Material Conference, Palm Springs, California, 19-22.
  51. Verma, V.K. and Singh, B.N. (2009), "Thermal buckling of laminated composite plates with random geometric and material properties", Int.J. Struct Stab. D., 9(2), 187-211. https://doi.org/10.1142/S0219455409002990
  52. Xu, K. and Noor, A.K. (1996), "Three dimensional analytical solutions for coupled thermoelectroelastic response of multilayered cylindrical shells", AIAA J., 34(4), 802-812. https://doi.org/10.2514/3.13143
  53. Zang, Z. and Chen, S. (1991), "The standard deviations of the Eigen solutions for random MDOF systems", Comput. Struct., 39(6), 603-607. https://doi.org/10.1016/0045-7949(91)90201-V

Cited by

  1. Finite element based nonlinear dynamic response of elastically supported piezoelectric functionally graded beam subjected to moving load in thermal environment with random system properties vol.44, 2017, https://doi.org/10.1016/j.apm.2016.12.004
  2. Stochastic hygro-thermo-mechanically induced nonlinear static analysis of piezoelectric elastically support sandwich plate using secant function based shear deformation theory (SFSDT) vol.05, pp.04, 2016, https://doi.org/10.1142/S2047684116500202
  3. Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation vol.3, pp.4, 2016, https://doi.org/10.12989/aas.2016.3.4.471
  4. Probabilistic analysis of micro-film buckling with parametric uncertainty vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.697
  5. Hygro-thermally induced stress intensity factor of an edge crack piezo laminated composite plate vol.15, pp.6, 2012, https://doi.org/10.1108/mmms-10-2018-0167