Acknowledgement
Supported by : Ministry of Science and Technological Development of Republic of Serbia
References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Meth. Eng., 2(3), 419-451. https://doi.org/10.1002/nme.1620020310
- Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
- Benjeddou, A., Deü, J.F. and Letombe, S. (2002) "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin. Wall. Struct., 40(7), 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
- Gandhi, M.V. and Thompson, B.S. (1992), Smart materials and structures, Chapman and Hall, London. Hwang, W.S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
- Klinkel, S. and Wagner, W. (2006), "A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation", Int. J. Num. Meth. Eng., 65(3), 349-382. https://doi.org/10.1002/nme.1447
- Lammering, R. (1991), "The application of a finite shell element for composites containing piezo-electric polymers in vibration control", Comput. Struct., 41(5), 1101-1109. https://doi.org/10.1016/0045-7949(91)90305-6
- Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2002) "A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures", Comput. Mech., 29(6), 510-519. https://doi.org/10.1007/s00466-002-0360-9
- Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2003), "A radial point interpolation method for simulation of twodimensional piezoelectric structures", Smart Mater. Struct., 12(2), 171-180. https://doi.org/10.1088/0964-1726/12/2/303
- Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "Theoretical aspects of the smoothed finite element method (SFEM)", Int. J. Num. Meth. Eng., 71(8), 902-930. https://doi.org/10.1002/nme.1968
- Long, C.S., Loveday, P.W. and Groenwold, A.A. (2006), "Planar four node piezoelectric elements with drilling degrees of freedom", Int. J. Num. Meth. Eng., 65(11), 1802-1830. https://doi.org/10.1002/nme.1524
- Marinkovic, D. (2007), A new finite composite shell element for piezoelectric active structures, Ph.D. Thesis, Otto-von-Guericke Universitaet Magdeburg, Germany, Fortschritt-Berichte VDI, Reihe 20: Rechnerunterstuetzte Verfahren, Nr. 406, Duesseldorf.
- Marinkovic, D., Koeppe, H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13, 379-392. https://doi.org/10.1080/15376490600777624
- Marinkovi, D., Koppe, H. and Gabbert, U. (2007), "Accurate modeling of the electric field within piezoelectric layers for active composite structures", Int. J. Intell. Mater. Syst., 18(5), 503-513. https://doi.org/10.1177/1045389X06067139
- Marinkovi, D., Koppe, H. and Gabbert U. (2009), "Aspects of modeling piezoelectric active thin-walled structures", Int. J. Intell. Mater. Syst., 20(15), 1835-1844. https://doi.org/10.1177/1045389X09102261
- Nguyen-Van, H., Mai-Duy, N. and Tran-Cong, T. (2008), "Analysis of piezoelectric solids with an efficient nodebased smoothing element", Proceedings of the WCCM8 and ECCOMAS 2008, Venice, Italy.
- Ohs, R.R. and Aluru, N.R. (2001), "Meshless analysis of piezoelectric devices", Comput. Mech., 27(1), 23-36. https://doi.org/10.1007/s004660000211
- Rudolf, C., Martin, T. and Wauer, J. (2010), "Control of PKM machine tools using Piezoelectric self-sensing Actuators on basis of the functional principle of a scale with a vibrating string", Smart Struct. Syst., 6(2), 167- 182. https://doi.org/10.12989/sss.2010.6.2.167
- Sze, K.Y. and Pan, Y.S. (1999), "Hybrid finite element models for piezoelectric materials", J. Sound Vib., 226(3), 519-547. https://doi.org/10.1006/jsvi.1999.2308
- Tzou, H.S. and Tseng, C.I. (1990), "Distributed piezoelectric sensor/actuator design for dynamic measurement/ control of distributed parameter systems: a finite element approach", J. Sound Vib., 138, 17-34. https://doi.org/10.1016/0022-460X(90)90701-Z
- Ye, L., Lin, Y., Dong, W., Limin, Z. and L, C. (2010), "Piezo-activated guided wave propagation and interaction with damage in tubular structures", Smart Struct.Syst., 6(7), 835-849. https://doi.org/10.12989/sss.2010.6.7.835
- Zemcik, R., Rolfes, R., Rose, M. and Tessmer, J. (2006), "High-performance 4-node shell element with piezoelectric coupling", Mech. Adv. Mater. Struct., 13, 393-401. https://doi.org/10.1080/15376490600777657
Cited by
- A numerically accurate and efficient coupled polynomial field interpolation for Euler–Bernoulli piezoelectric beam finite element with induced potential effect vol.26, pp.12, 2015, https://doi.org/10.1177/1045389X14544149
- Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1373
- An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element vol.12, pp.1, 2015, https://doi.org/10.1590/1679-78251401
- SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space vol.17, pp.2, 2016, https://doi.org/10.12989/sss.2016.17.2.327
- Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures vol.125, 2017, https://doi.org/10.1016/j.compositesb.2017.05.061
- A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations vol.13, pp.5, 2016, https://doi.org/10.1590/1679-78251750
- Efficient three-node finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures vol.29, pp.3, 2018, https://doi.org/10.1177/1045389X17705538
- A consistently efficient and accurate higher order shear deformation theory based finite element to model extension mode piezoelectric smart beams vol.27, pp.9, 2016, https://doi.org/10.1177/1045389X15588626
- Modeling of piezoelectric sensors adhesively bonded on trusses using a mathematical programming approach vol.58, pp.3, 2018, https://doi.org/10.1007/s00158-018-1933-3
- Linear shell elements for active piezoelectric laminates vol.20, pp.6, 2017, https://doi.org/10.12989/sss.2017.20.6.729
- Control-structure interaction in piezoelectric deformable mirrors for adaptive optics vol.21, pp.6, 2012, https://doi.org/10.12989/sss.2018.21.6.777