Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Balageas, D., Fritzen, C.P. and Guemes, A.(Eds.) (2006), Structural Health Monitoring, New Jersey, John Wiley& Sons.
- Casciati, F. and Fuggini, C. (2011), "Monitoring a steel building using GPS sensors", Smart Struct.Syst., 7(5), 349-363. https://doi.org/10.12989/sss.2011.7.5.349
- Jeon, H., Bang, Y. and Myung, H. (2011), "A paired visual servoing system for 6-DOF displacement measurement of structures", Smart Mater. Struct., 20(4), 45019-45034. https://doi.org/10.1088/0964-1726/20/4/045019
- Ji, Y.F. and Chang, C.C. (2008), "Nontarget stereo vision technique for spatiotemporal response measurement of line-like structures", J. Eng. Mech. - ASCE, 134(6), 466-474. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(466)
- Lee, J.J. and Shinozuka, M. (2006), "Real-time displacement measurement of a flexible bridge using digital image processing techniques", Exp. Mech., 46(1), 105-114. https://doi.org/10.1007/s11340-006-6124-2
- Leith, J.G., Thompson, A. and Sloan, T.D. (1989), "A novel dynamic deflection measurement system for large structure", Proceedings of the 4th Int. Conf. on Civil and Structural Engineering Computing, London.
- Marecos, J., Castanheira, M. and Trigo, J. (1969), "Field observation of Tagus river suspension bridge", J. Struct. Div.- ASCE, 95(4), 555-583.
- Myung, H., Lee, S.M. and Lee, B.J. (2011), "Paired structured light for structural health monitoring robot system", Struct. Health Monit., 10(1), 49-64. https://doi.org/10.1177/1475921710365413
- Ni, Y.Q. (2009), "Fusion of vision-based displacement and acceleration using Kalman filter", Proceedings of the 5th Int. Workshop on Advanced Smart Materials and Smart Structures Technology, Boston.
- Ni, Y.Q., Wong, K.Y. and Xia, Y. (2011), "Health checks through land mark bridges to sky-high structures", Adv. Struct. Eng., 14(1), 103-119. https://doi.org/10.1260/1369-4332.14.1.103
- Olaszek, P. (1999), "Investigation of the dynamic characteristic of bridge structures using a computer vision method", Measurement, 25(3), 227-236. https://doi.org/10.1016/S0263-2241(99)00006-8
- Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Vision-based displacement measurement method for high-rise building structures using partitioning approach", NDT & E Int., 43(7), 642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
- Park, K.T., Kim, S.H., Park, H.S. and Lee, K.W. (2005), "The determination of bridge displacement using measured acceleration", Eng. Struct., 27(3), 371-378. https://doi.org/10.1016/j.engstruct.2004.10.013
- Psimoulis, P., Pytharouli, S., Karambalis, D. and Stiros, S. (2008), "Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures", J. Sound Vib., 318(3), 606-623. https://doi.org/10.1016/j.jsv.2008.04.036
- Siegwart, R. and Nourbakhsh, I.R. (2004), Introduction to Autonomous Mobile Robots, MIT Press.
- Spencer, B.F., Jr., Christenson, R.E. and Dyke, S.J. (1998), "Next generation benchmark control problem for seismically excited buildings", Proceedings of the 2nd Int. Conf. on Structural Control, June 29-July 2.
- Stephen, G.A., Brownjohn, J.M.W. and Taylor, C.A. (1993), "Measurements of static and dynamic displacement from visual monitoring of the Humber bridge", Eng. Struct., 15(3), 197-208. https://doi.org/10.1016/0141-0296(93)90054-8
- Wahbeh, A.M., Caffrey, J.P. and Masri, S.F. (2003), "A vision-based approach for the direct measurement of displacements in vibrating systems", Smart Mater. Struct., 12(5), 785-794. https://doi.org/10.1088/0964-1726/12/5/016
- Welch, G. and Bishop, G. (2006), An introduction to the Kalman filter, TR95-041., Department of Computer Science, University of North Carolina, Chapel Hill.
- Xu, Y.L. and Chan, W.S. (2009), "Wind structural monitoring of long span cable-supported bridges with GPS", Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei.
Cited by
- Experimental Validation of Visually Servoed Paired Structured Light System (ViSP) for Structural Displacement Monitoring vol.19, pp.5, 2014, https://doi.org/10.1109/TMECH.2013.2290020
- Survey on robotics and automation technologies for civil infrastructure vol.13, pp.6, 2014, https://doi.org/10.12989/sss.2014.13.6.891
- Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.801
- Incremental Displacement Estimation Algorithm for Real-Time Structural Displacement Monitoring vol.18, pp.6, 2012, https://doi.org/10.5302/J.ICROS.2012.18.6.579
- Pose-graph optimized displacement estimation for structural displacement monitoring vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.943
- One-way ViSP (Visually Servoed Paired structured light system) for structural displacement monitoring vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa746f
- Vision-based remote 6-DOF structural displacement monitoring system using a unique marker vol.13, pp.6, 2014, https://doi.org/10.12989/sss.2014.13.6.927
- The displacement estimation error back-propagation (DEEP) method for a multiple structural displacement monitoring system vol.24, pp.4, 2013, https://doi.org/10.1088/0957-0233/24/4/045104
- High-speed 6-DOF structural displacement monitoring by fusing ViSP (Visually Servoed Paired structured light system) and IMU with extended Kalman filter vol.24, pp.6, 2017, https://doi.org/10.1002/stc.1926
- Vision-based hybrid 6-DOF displacement estimation for precast concrete member assembly vol.20, pp.4, 2012, https://doi.org/10.12989/sss.2017.20.4.397