DOI QR코드

DOI QR Code

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Feng, J. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Zhu, W.Q. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Ni, Y.Q. (Department of Civil and Structural Engineering, The Hong Kong Polytechnic University)
  • Received : 2010.11.19
  • Accepted : 2012.02.20
  • Published : 2012.03.25

Abstract

The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.

Keywords

References

  1. Adelman, N.T., Stavsky, Y. and Segal, E. (1975), "Axisymmetric vibration of radially polarized piezoelectric ceramic cylinders", J. Sound Vib., 38(2), 245-254. https://doi.org/10.1016/S0022-460X(75)80008-3
  2. Babaev, A.E., But, L.M. and Savin, V.G. (1990), "Transient vibrations of a thin-walled cylindrical piezoelectric vibrator driven by a nonaxisymmetric electric signal in a liquid", Int. Appl. Mech., 26(12), 1167-1174.
  3. Balamurugan, V. and Narayanan, S. (2001), "Active vibration control of smart shells using distributed piezoelectric sensors and actuators", Smart Mater. Struct., 10(2), 173-180. https://doi.org/10.1088/0964-1726/10/2/301
  4. Berg, M., Hagedorn, P. and Gutschmidt, S. (2004), "On the dynamics of piezoelectric cylindrical shells", J. Sound Vib., 274(1-2), 91-109. https://doi.org/10.1016/S0022-460X(03)00650-3
  5. Berlincourt, D.A., Curran, D.R. and Jaffe, H. (1964), Piezoelectric and piezomagnetic materials and their function in transducers, Physical Acoustics: Principle and Methods, Academic Press, London.
  6. Borisyuk, A.I. and Kirichok, I.F. (1979), "Steady-state radial vibrations of piezoelectric spheres in compressible fluid", Int. Appl. Mech., 15(10), 936-940.
  7. Chen, W.Q., Ding, H.J. and Xu, R.Q. (2001), "Three dimensional free vibration analysis of a fluid-filled piezoelectric hollow sphere", Comput. Struct., 79(6), 653-663. https://doi.org/10.1016/S0045-7949(00)00166-8
  8. Correia, I.F.P., Soares, C.M.M., Soares, C.A.M. and Herskovits, J. (2002), "Active control of axisymmetric shells with piezoelectric layers: a mixed laminated theory with a high order displacement field", Comput. Struct., 80(27-30), 2265-2275. https://doi.org/10.1016/S0045-7949(02)00239-0
  9. Ding, H.J., Wang, H.M. and Chen, W.Q. (2003), "Transient responses in a piezoelectric spherically isotropic hollow sphere for symmetric problems", J. Appl. Mech., 70(3), 436-445. https://doi.org/10.1115/1.1554415
  10. Ding, H.J., Wang, H.M. and Hou, P.F. (2003), "The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain problems", Int. J. Solids Struct., 40(1), 105-123. https://doi.org/10.1016/S0020-7683(02)00525-5
  11. Ding, H.J., Xu, R.Q. and Chen, W.Q. (2002), "Free vibration of transversely isotropic piezoelectric circular cylindrical panels", Int. J. Mech. Sci., 44(1), 191-206. https://doi.org/10.1016/S0020-7403(01)00076-5
  12. Gupta, V.K., Seshu, P. and Issac, K.K. (2004), "Finite element and experimental investigation of piezoelectric actuated smart shells", AIAA J., 42(10), 2112-2123. https://doi.org/10.2514/1.2902
  13. Hasheminejad, S.M. and Rajabi, M. (2008), "Scattering and active acoustic control from a submerged piezoelectric- coupled orthotropic hollow cylinder", J. Sound Vib., 318(1-2), 50-73. https://doi.org/10.1016/j.jsv.2008.04.005
  14. Heyliger, P. and Wu, Y.C. (1999), "Electroelastic fields in layered piezoelectric spheres", Int. J. Eng. Sci., 37(2), 143-161. https://doi.org/10.1016/S0020-7225(98)00068-8
  15. Huang, Y.M. and Tseng, H.C. (2008), "Active piezoelectric dynamic absorbers on vibration and noise reductions of the fuselage", J. Mech., 24, 69-77. https://doi.org/10.1017/S172771910000157X
  16. Jin, Z.L., Yang, Y.W. and Soh, C.K. (2010), "Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control", Smart Struct. Syst., 6(7), 767-792. https://doi.org/10.12989/sss.2010.6.7.767
  17. Kumar, R., Mishra, B. and Jain, S. (2008), "Vibration control of smart composite laminated spherical shell using neural network", J. Intell. Mater. Sys. Struct., 19(8), 947-957. https://doi.org/10.1177/1045389X07082940
  18. Li, D.S., Cheng, L. and Gosselin, C.M. (2004), "Optimal design of PZT actuators in active structural acoustic control of a cylindrical shell with a floor partition", J. Sound Vib., 269(3-5), 569-588. https://doi.org/10.1016/S0022-460X(03)00044-0
  19. Li, H.Y., Liu, Z.X. and Lin, Q.R. (2000), "Spherical-symmetric steady-state response of piezoelectric spherical shell under external excitation", Appl. Math. Mech. - ENGL., 21(8), 947-956. https://doi.org/10.1007/BF02428365
  20. Li, X. and Zhang, Y.F. (2008), "Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint", Smart Struct. Syst., 4(5), 565-582. https://doi.org/10.12989/sss.2008.4.5.565
  21. Loza, I.A. and Shul'ga, N.A. (1990), "Forced axisymmetric vibrations of a hollow piezoelectric sphere with an electrical method of excitation", Int. Appl. Mech., 26(9), 818-822.
  22. Narayanan, S. and Balamurugan, V. (2003), "Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators", J. Sound Vib., 262(3), 529-562. https://doi.org/10.1016/S0022-460X(03)00110-X
  23. Park, S., Yun, C.B., Roh, Y. and Lee, J.J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  24. Paul, H.S. and Venkatesan, M. (1987), "Vibration of a hollow circular cylinder of piezoelectric ceramics", J. Acoust. Soc. Am., 82, 952-956. https://doi.org/10.1121/1.395294
  25. Puzyrev, V. (2010), "Elastic waves in piezoceramic cylinders of sector cross-section", Int. J. Solids Struct., 47(16), 2115-2122. https://doi.org/10.1016/j.ijsolstr.2010.04.011
  26. Rao, S.S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., 47(4), 113-123. https://doi.org/10.1115/1.3111074
  27. Ray, M.C. (2003), "Optimal control of laminated shells using piezoelectric sensor and actuator layers", AIAA J., 41(6), 1151-1157. https://doi.org/10.2514/2.2058
  28. Roy, T. and Chakraborty, D. (2009), "Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient", Smart Mater. Struct., 18(11), 115006. https://doi.org/10.1088/0964-1726/18/11/115006
  29. Rudolf, C., Martin, T. and Wauer, J. (2010), "Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string", Smart Struct. Syst., 6(2), 167-182. https://doi.org/10.12989/sss.2010.6.2.167
  30. Saravanos, D.A. and Heyliger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918
  31. Sarma, K.V. (1980), "Torsional wave motion of a finite inhomogeneous piezoelectric cylindrical shell", Int. J. Eng. Sci., 18(3), 449-454. https://doi.org/10.1016/0020-7225(80)90038-5
  32. Scandrett, C. (2002), "Scattering and active acoustic control from a submerged spherical shell", J. Acoust. Soc. Am., 111(2), 893-907. https://doi.org/10.1121/1.1428749
  33. Sheng, G.G. and Wang, X. (2009), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90(4), 448-457. https://doi.org/10.1016/j.compstruct.2009.04.017
  34. Shul'ga, N.A., Grigorenko, A.Y. and Loza, I.A. (1984), "Axisymmetric electroelastic waves in a hollow piezoelectric ceramic cylinder", Int. Appl. Mech., 20(1), 23-28.
  35. Sohn, J.W., Choi, S.B. and Lee, C.H. (2009), "Active vibration control of smart hull structure using piezoelectric composite actuators", Smart Mater. Struct., 18, 074004. https://doi.org/10.1088/0964-1726/18/7/074004
  36. Stengel, R.F. (1986), Stochastic Optimal Control: Theory and Application, John Wiley & Sons, New York.
  37. Tawie, R., Lee, H.K. and Park, S.H. (2010), "Non-destructive evaluation of concrete quality using PZT transducers", Smart Struct. Syst., 6(7), 851-866. https://doi.org/10.12989/sss.2010.6.7.851
  38. To, C.W.S. and Chen, T. (2007), "Optimal control of random vibration in plate and shell structures with distributed piezoelectric components", Int. J. Mech. Sci., 49(12), 1389-1398. https://doi.org/10.1016/j.ijmecsci.2007.03.015
  39. Trajkov, T.N., Koppe, H. and Gabbert, U. (2006), "Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors", Smart Mater. Struct., 15(4), 1119-1132. https://doi.org/10.1088/0964-1726/15/4/026
  40. Tzou, H.S., Wang, D.W. and Chai, W.K. (2002), "Dynamics and distributed control of conical shells laminated with full and diagonal actuators", J. Sound Vib., 256(1), 65-79. https://doi.org/10.1006/jsvi.2001.4199
  41. Tzou, H.S. and Zhong, J.P. (1994), "A linear theory of piezoelastic shell vibrations", J. Sound Vib., 175(1), 77-88. https://doi.org/10.1006/jsvi.1994.1312
  42. Ying, Z.G., Feng, J., Ni, Y.Q. and Zhu, W.Q. (2011), "Electric potential response analysis of a piezoelectric shell under random micro-vibration excitations", Smart Mater. Struct., 20(10), 105029. https://doi.org/10.1088/0964-1726/20/10/105029
  43. Ying, Z.G., Wang, Y., Ni, Y.Q. and Ko, J.M. (2009), "Stochastic response analysis of piezoelectric axisymmetric hollow cylinders", J. Sound Vib., 321(3-5), 735-761. https://doi.org/10.1016/j.jsv.2008.10.002
  44. Ying, Z.G. and Zhu, X.Q. (2009), "Response analysis of piezoelectric shells in plane strain under random excitations", Acta Mech. Solida Sin., 22, 152-160. https://doi.org/10.1016/S0894-9166(09)60100-2
  45. Yu, L.Y. and Giurgiutiu, V. (2005), "Advances signal processing for enhanced damage detection with piezoelectric wafer active sensors", Smart Struct. Syst., 1(2), 185-215. https://doi.org/10.12989/sss.2005.1.2.185
  46. Zeng, X.W. (2006), "Applications of piezoelectric sensors in geotechnical engineering", Smart Struct. Syst., 2(3), 237-251. https://doi.org/10.12989/sss.2006.2.3.237

Cited by

  1. Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter vol.90, pp.1, 2017, https://doi.org/10.1007/s11071-017-3650-7
  2. Dynamic asymmetry of piezoelectric shell structures vol.332, pp.16, 2013, https://doi.org/10.1016/j.jsv.2013.03.002
  3. Asymptotic Stability of Controlled Nonlinear Stochastic Systems Considering the Dynamics of Sensors and Actuators vol.21, pp.13, 2012, https://doi.org/10.1142/s0219455421501807