DOI QR코드

DOI QR Code

Exact solutions of free vibration of rotating multilayered FGM cylinders

  • Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University) ;
  • Li, Hao-Yuan (Department of Civil Engineering, National Cheng Kung University)
  • 투고 : 2011.03.28
  • 심사 : 2012.01.13
  • 발행 : 2012.02.25

초록

A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.

키워드

과제정보

연구 과제 주관 기관 : National Science Council of Republic of China

참고문헌

  1. Bryan, G.H. (1890), "On the beats in the vibrations of a revolving cylinder bell", Proc. Cambridge Philos. Soc., 7, 101-111.
  2. Carrera, E. (1999a), "Multilayered shell theories accounting for layerwise mixed description, Part 1: Governing equations", AIAA J., 37(9), 1107-1116. https://doi.org/10.2514/2.821
  3. Carrera, E. (1999b), "Multilayered shell theories accounting for layerwise mixed description, Part 2: Numerical evaluations", AIAA J., 37(9), 1117-1124. https://doi.org/10.2514/2.822
  4. Carrera, E. (1999c), "A Reissner's mixed variational theorem applied to vibration analysis of multilayered shell", J. Appl. Mech -T ASME., 66(1), 69-78. https://doi.org/10.1115/1.2789171
  5. Carrera, E. (2000a), "Single- vs multilayer plate modeling on the basis of Reissner's mixed theorem", AIAA J., 38(2), 342-352. https://doi.org/10.2514/2.962
  6. Carrera, E. (2000b), "Assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
  7. Carrera, E. (2001), "Developments, ideas, and evaluations based upon Reissner's Mixed Variational Theorem in the modeling of multilayered plates and shells", Appl. Mech. Rev., 54(4), 301-329. https://doi.org/10.1115/1.1385512
  8. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks", Arch. Comput. Method. E., 10(3), 215-296. https://doi.org/10.1007/BF02736224
  9. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2010), "Refined and advanced models for multilayered plates and shells embedding functionally graded material layers", Mech. Adv. Mater. Struc., 17, 603-621. https://doi.org/10.1080/15376494.2010.517730
  10. Chen, Y., Zhao, H.B., Shen, Z.P., Grieger, I. and Kröplin, B.H. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010
  11. Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), "Variable kinematic models applied to free-vibration analysis of functionally graded material shells", Eur. J. Mech. A - Solid., 29, 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001
  12. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of a rotating thin-walled circular cylinder", J. Appl. Mech -T ASME., 31(4), 700-701. https://doi.org/10.1115/1.3629733
  13. Guo, D., Zheng, Z. and Chu, F. (2002), "Vibration analysis of spinning cylindrical shells by finite element method", Int. J. Soilds Struct., 39(3), 725-739. https://doi.org/10.1016/S0020-7683(01)00031-2
  14. Guo, D., Chu, F.L. and Zheng, Z.C. (2001), "The influence of rotation on vibration of a thick cylindrical shell", J. Sound Vib., 242(3), 487-505. https://doi.org/10.1006/jsvi.2000.3356
  15. Haddadpour, H., Mahmoudkhani, S. and Navazi, H.M., "Free vibration analysis of functionally graded cylindrical shells including thermal effects", Thin. Wall. Struct., 45, 591-599.
  16. Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solids, 13(4), 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
  17. Hua, L. and Lam, K.Y. (2001), "Orthotropic influence on frequency characteristics of a rotating composite laminated conical shell by the generalized differential quadrature method", Int. J. Solids Struct., 38(22-23), 3995-4015. https://doi.org/10.1016/S0020-7683(00)00272-9
  18. Huang, S.C. and Soedel, W. (1988), "On the forced vibration of simply supported rotating cylindrical shells", J. Acoust. Soc. Am., 84(1), 275-284. https://doi.org/10.1121/1.396974
  19. Huang, S.C. and Hsu, B.S. (1990), "Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load", J. Sound Vib., 136(2), 215-228. https://doi.org/10.1016/0022-460X(90)90852-Q
  20. Kadivar, M.H. and Samani, K. (2000), "Free vibration of rotating thick composite cylindrical shells using layerwise laminate theory", Mech. Res. Commun., 27, 679-684. https://doi.org/10.1016/S0093-6413(00)00148-8
  21. Lam, K.Y. and Loy, C.T. (1994), "On vibrations of thin rotating laminated composite cylindrical shells", Compos. Eng., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S
  22. Lam, K.Y. and Loy, C.T. (1995a), "Free vibrations of a rotating multi-layered cylindrical shell", Int. J. Solids Struct., 32(5), 647-663. https://doi.org/10.1016/0020-7683(94)00143-K
  23. Lam, K.Y. and Loy, C.T. (1995b), "Effects of boundary conditions on frequencies of a multi-layered cylindrical shell", J. Sound Vib., 188(3), 363-384. https://doi.org/10.1006/jsvi.1995.0599
  24. Lam, K.Y. and Loy, C.T. (1995c), "Analysis of rotating laminated cylindrical shells by different thin shell theories", J. Sound Vib., 186(1), 23-35. https://doi.org/10.1006/jsvi.1995.0431
  25. Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41(3-4), 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9
  26. Lam, K.Y. and Wu, Q. (1999), "Vibrations of thick rotating laminated composite cylindrical shells", J. Sound Vib., 225(3), 483-501. https://doi.org/10.1006/jsvi.1999.2205
  27. Leissa, A.W. (1973), Vibration of Shells, NASA SP-288. Washington.
  28. Leissa, A.W. (1995), Buckling and postbuckling theory for laminated composite plates, (Eds., Turvey G.J. and Marshall IH ), Buckling and Postbuckling of Composite Plates. Chapman and Hall, UK.
  29. Padovan, J. (1973), "Natural frequencies of rotating prestressed cylinders", J. Sound Vib., 31(4), 469-482. https://doi.org/10.1016/S0022-460X(73)80261-5
  30. Sepiani, H.A., Rastgoo, A., Ebrahimi, F. and Ghorbanpour Arani, A. (2010), "Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia", Mater. Design., 31(3), 1063-1069. https://doi.org/10.1016/j.matdes.2009.09.052
  31. Soedel, W. (1993), Vibrations of Shells and Plates, Marcel Dekker, Inc., New York.
  32. Soldatos, K.P. and Hadjigeorgiou, V.P. (1990), "Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels", J. Sound Vib., 137(3), 369-384. https://doi.org/10.1016/0022-460X(90)90805-A
  33. Srinivasan, A.V. and Lauterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Industry, 93, 1229-1232. https://doi.org/10.1115/1.3428067
  34. Wang, H.M., Liu, C.B. and Ding, H.J. (2009), "Exact solution and transient behavior for torsional vibration of functionally graded finite hollow cylinders", Acta Mech Sinica, 25(4), 555-563. https://doi.org/10.1007/s10409-009-0251-9
  35. Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three-dimensional static behavior of functionally graded magnetoelectroelastic plates using the modified Pagano method", Mech. Res. Commun., 37(1), 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003
  36. Wu, C.P. and Chiu, S.J. (2001), "Thermoelastic buckling of laminated composite conical shells", J. Therm. Stresses, 24(9), 881-901. https://doi.org/10.1080/014957301750379649
  37. Wu, C.P. and Chiu, S.J. (2002), "Thermally induced dynamic instability of laminated composite conical shells", Int. J. Solids Struct., 39(11), 3001-3021. https://doi.org/10.1016/S0020-7683(02)00234-2
  38. Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", Comput. Mater. Continua, 8, 93-132.
  39. Wu, C.P. and Lu, Y.C. (2009), "A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates", Compos. Struct., 90(3), 363-372. https://doi.org/10.1016/j.compstruct.2009.03.022
  40. Wu, C.P. and Tsai, Y.H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95-119. https://doi.org/10.1007/s10665-008-9234-2
  41. Yas, M. and Garmsiri, K., "Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement", Steel Compos. Struct., 10, 349-360. https://doi.org/10.12989/scs.2010.10.4.349
  42. Ye, J. (2003), Laminated Composite Plates and Shells-3D modelling, Springer-Verlag, London, UK.
  43. Zohar, A. and Aboudi, J. (1973), "The free vibrations of a thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X

피인용 문헌

  1. Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. Part I: Theory vol.44, 2014, https://doi.org/10.1016/j.euromechsol.2013.11.004
  2. Three-dimensional dynamic responses of carbon nanotube–reinforced composite plates with surface-bonded piezoelectric layers using Reissner’s mixed variational theorem–based finite layer methods vol.26, pp.3, 2015, https://doi.org/10.1177/1045389X14523859
  3. Reissner’s mixed variational theorem-based finite cylindrical layer methods for the three-dimensional free vibration analysis of sandwich circular hollow cylinders with an embedded functionally graded material layer vol.20, pp.8, 2014, https://doi.org/10.1177/1077546312469426
  4. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells vol.147, 2016, https://doi.org/10.1016/j.compstruct.2016.03.031
  5. Large amplitude free vibrations of FGM shallow curved tubes in thermal environment vol.25, pp.6, 2012, https://doi.org/10.12989/sss.2020.25.6.693