DOI QR코드

DOI QR Code

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology) ;
  • Qiu, Wan-Chao (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology) ;
  • Ou, Zhuo-Cheng (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology) ;
  • Duan, Zhuo-Ping (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology) ;
  • Huang, Feng-Lei (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology)
  • 투고 : 2012.02.29
  • 심사 : 2012.11.08
  • 발행 : 2012.12.25

초록

The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.

키워드

참고문헌

  1. Barenblatt, G.I. (1959), "The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks", Appl. Math. Mech., 23, 622-636. https://doi.org/10.1016/0021-8928(59)90157-1
  2. Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus", Compos. Sci. Technol., 56, 439- 449. https://doi.org/10.1016/0266-3538(96)00005-X
  3. Brara, A. and Klepaczko, J.R. (2007), "Fracture energy of concrete at high loading rates in tension", Int. J. Impact. Eng., 34, 424-435. https://doi.org/10.1016/j.ijimpeng.2005.10.004
  4. Buyukozturk, O. and Hearing, B. (1998), "Crack propagation in concrete composites influenced by interface fracture parameters", Int. J. Solids. Struct., 35, 4055-4066. https://doi.org/10.1016/S0020-7683(97)00300-4
  5. Cai, M., Kaiser, P.K., Suorineni, F. and Su, K. (2007), "A study on the dynamic behavior of the Meuse/Haute- Marne argillite", Phys. Chem. Earth., 32, 907-916. https://doi.org/10.1016/j.pce.2006.03.007
  6. Camacho, G.T. and Ortiz, M. (1996), "Computational modeling of impact damage in brittle materials", Int. J. Solids. Struct., 33, 2899-2938. https://doi.org/10.1016/0020-7683(95)00255-3
  7. Cotsovos, D.M. and Pavlovi , M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact. Eng., 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006
  8. Cotsovos, D.M. and Pavlovi , M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comput. Struct., 86, 145-163. https://doi.org/10.1016/j.compstruc.2007.05.014
  9. Cotsovos, D.M. and Pavlovi , M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behavior at high loading rates", Comput. Struct., 86, 164-180. https://doi.org/10.1016/j.compstruc.2007.05.015
  10. Dugdale, D.C. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids., 8, 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  11. Wei, X.Y. and Hao, H. (2009), "Numerical derivation of homogenized dynamic masonry material properties with strain rate effects", Int. J. Impact. Eng., 36, 522-536. https://doi.org/10.1016/j.ijimpeng.2008.02.005
  12. Geubelle, P.H. and Baylor, J. (1998), "Impact-induced delamination of laminated composites: a 2D simulation", Compos. Part B Eng., 29(5), 589-602. https://doi.org/10.1016/S1359-8368(98)00013-4
  13. He, M.Y. and Hutchinson, J.W. (1989), "Crack deflection at an interface between dissimilar elastic materials", Int. J. Solids. Struct., 25, 1053-1067. https://doi.org/10.1016/0020-7683(89)90021-8
  14. Klepaczko, J.R. and Brara, A. (2001), "An experimental method for dynamic tensile testing of concrete by spalling", Int. J. Impact. Eng., 25, 387-409. https://doi.org/10.1016/S0734-743X(00)00050-6
  15. Liu, L.G., Ou, Z.C., Duan, Z.P. and Huang, F.L. (2010), "Strain-rate effects on deflection/penetration of crack terminating perpendicular to bimaterial interface under dynamic loadings", Int. J. Fract., 167, 135-145.
  16. Needleman, A. (1990a), "An analysis of tensile decohesion along an interface", J. Mech. Phys. Solids., 38, 289- 294. https://doi.org/10.1016/0022-5096(90)90001-K
  17. Ou, Z.C., Duan, Z.P. and Huang, F.L. (2010), "Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials", Int. J. Impact. Eng., 37, 942-945. https://doi.org/10.1016/j.ijimpeng.2010.02.003
  18. Qi, C.Z., Wang, M.Y. and Qian, Q.H. (2009), "Strain-rate effects on the strength and fragmentation size of rocks", Int. J. Impact. Eng., 36, 1355-1364. https://doi.org/10.1016/j.ijimpeng.2009.04.008
  19. Rice, J.R. (1968), Mathematical Analysis in the Mechanics of Fracture, Ed. Liebowitz, H., Fracture, Vol 2, Academic Press, New York.
  20. Rice, J.R. and Wang, J.S. (1989), "Embrittlement of interfaces by solute segregation", Mater. Sci. Eng. A., 107, 23-40. https://doi.org/10.1016/0921-5093(89)90372-9
  21. Siegmund, T., Fleck, N.A. and Needleman, A. (1997), "Dynamic crack growth across an interface", Int. J. Fract., 85, 381-402. https://doi.org/10.1023/A:1007460509387
  22. Tvergaard, V. (1990), "Effect of fibre debonding in a whisker-reinforced metal", Mater. Sci. Eng. A., 125(2), 203- 213. https://doi.org/10.1016/0921-5093(90)90170-8
  23. Tvergaard, V. and Hutchinson, J.W. (1992), "The relation between crack growth resistance and fracture process parameters in elastic-plastic solids", J. Mech. Phy. Solids., 40(6), 1377-1397. https://doi.org/10.1016/0022-5096(92)90020-3
  24. Weerheijm, J. and Van Doormaal, J.C.A.M. (2007), "Tensile failure of concrete at high loading rates New test data on strength and fracture energy from instrumented spalling tests", Int. J. Impact. Eng., 34, 609-626. https://doi.org/10.1016/j.ijimpeng.2006.01.005
  25. Xu, X.P. and Needleman, A. (1993), "Void nucleation by inclusion debonding in a crystal matrix", Model. Simul. Mater. Sci. Eng., 1(2), 111-132. https://doi.org/10.1088/0965-0393/1/2/001
  26. Zhang, Z.Y. and Paulino, G.H. (2005), "Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials", Int. J. Plast., 21, 1195-1254. https://doi.org/10.1016/j.ijplas.2004.06.009
  27. Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact. Eng., 31, 825-841. https://doi.org/10.1016/j.ijimpeng.2004.04.009

피인용 문헌

  1. Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling vol.26, pp.3, 2012, https://doi.org/10.12989/cac.2020.26.3.227