Acknowledgement
Supported by : Scientific and Technical Research Council of Turkey (TUBITAK)
References
- Bagdatli, S.M., Ozkaya, E., Ozyigit, H.A. and Tekin, A. (2009), "Nonlinear vibrations of stepped beam systems using artificial neural networks", Struct. Eng. Mech., 33(1), 15-30. https://doi.org/10.12989/sem.2009.33.1.015
- Bagdatli, S.M., Oz, H.R. and Ozkaya, E. (2011), "Dynamics of axially accelerating beams with an intermediate support", J. Vib. Acoust., 133(3), Article Number: 031013.
- Bagdatli, S.M., Oz, H.R. and Ozkaya, E. (2011), "Non-linear transverse vibrations and 3:1 internal resonances of a tensioned beam on multiple supports", Math. Comput. Appl., 16(1), 203-215.
- Boyaci, H. (2005), "Beam vibrations with non-ideal boundary conditions the seventh international conference on vibration problems", ICOVP-2005, Turkey Springer Proceedings in Physics, 111, 97-102, Istanbul, September.
- Boyaci, H. (2006), "Vibrations of stretched damped beams under non-ideal boundary conditions", Sadhana, 31(1), 1-8. https://doi.org/10.1007/BF02703795
- Cetin, D. and Simsek, M. (2011), "Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium", Struct. Eng. Mech., 40(4), 583-594. https://doi.org/10.12989/sem.2011.40.4.583
- Chen, L.Q. and Zhao, W.J. (2005), "A numerical method for simulating transverse vibrations of an axially moving string", Appl. Math. Comput., 160(2), 411-422. https://doi.org/10.1016/j.amc.2003.11.012
- Chen, L.Q., Zhang, W. and Zu, J.W. (2009), "Nonlinear dynamics for transverse motion of axially moving strings", Chaos, Soliton. Fract., 40, 78-90. https://doi.org/10.1016/j.chaos.2007.07.023
- Chung, J., Han, C.S. and Yi, K. (2001), "Vibration of an axially moving string with geometric non-linearity and translating acceleration", J. Sound Vib., 240(4), 733-746. https://doi.org/10.1006/jsvi.2000.3241
- Ghayesh, M.H. (2010), "Parametric vibrations and stability of an axially accelerating string guided by a nonlinear elastic foundation", Int. J. Nonlin. Mech., 45, 382-394. https://doi.org/10.1016/j.ijnonlinmec.2009.12.011
- Ghayesh, M.H. (2011), "Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance", Int. J. Mech. Sci., 53, 1022-1037. https://doi.org/10.1016/j.ijmecsci.2011.08.010
- Ghayesh, M.H., Kafiabad, H.A. and Reid, T. (2012), "Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam", Int. J. Solids Struct., 49, 227-243. https://doi.org/10.1016/j.ijsolstr.2011.10.007
- Huang, J.L., Su, R.K.L., Li, W.H. and Chen, S.H. (2011), "Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances", J. Sound Vib., 330, 471-485. https://doi.org/10.1016/j.jsv.2010.04.037
- Miranker, W.L. (1960), "The wave equation in a medium in motion", IBM J. Res. Development, 4, 36-42. https://doi.org/10.1147/rd.41.0036
- Mockenstrum, E.M., Perkins, N.C. and Ulsoy, A.G. (1994), "Stability and limit cycles of parametrically excited, axially moving strings", J. Vib. Acoust., ASME 118, 346-350.
- Nahfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley, New York.
- Nayfeh, A.H., Nayfeh, J.F. and Mook, D.T. (1992), "On methods for continuous systems with quadratic and cubic nonlinearities", Nonlin. Dyn., 3, 145-162. https://doi.org/10.1007/BF00118990
- Nguyen, Q.C. and Hong, K.S. (2010), "Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control", J. Sound Vib., 329, 4588-4603. https://doi.org/10.1016/j.jsv.2010.05.021
- Oz, H.R., Pakdemirli, M. and Ozkaya, E. (1998), "Transition behaviour from string to beam for an axially accelerating material", J. Sound Vib., 215(3), 571-576. https://doi.org/10.1006/jsvi.1998.1572
- Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time-dependent velocity", J. Sound Vib., 227(2), 239-257. https://doi.org/10.1006/jsvi.1999.2247
- Oz, H.R. (2001), "On the vibrations of an axially travelling beam on fixed supports with variable velocity", J. Sound Vib., 239(3), 556-564. https://doi.org/10.1006/jsvi.2000.3077
- Ozkaya, E. and Pakdemirli, M. (2000), "Vibrations of an axially accelerating beam with small flexural stiffness", J. Sound Vib., 234(3), 521-535. https://doi.org/10.1006/jsvi.2000.2890
- Ozkaya, E. and Pakdemirli, M. (2000), "Lie Group theory and analytical solutions for the axially accelerating string problem", J. Sound Vib., 230(4), 729-742. https://doi.org/10.1006/jsvi.1999.2651
- Ozkaya, E. (2001), "Linear transverse vibrations of a simply supported beam carrying concentrated masses", Math. Comput. Appl., 6(3), 147-151.
- Ozkaya, E. and Oz, H.R. (2002), "Determination of stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252(4), 782-789. https://doi.org/10.1006/jsvi.2001.3991
- Ozkaya, E. (2002), "Non-linear transverse vibrations of a simply supported beam carriying concentrated masses", J. Sound Vib., 257(3), 413-424. https://doi.org/10.1006/jsvi.2002.5042
- Ozkaya, E., Ba datl , S.M. and Oz, H.R. (2008), "Non-linear transverse vibrations and 3:1 internal resonances of a beam with multiple supports", J. Vib. Acous., 130(2), Article Number: 021013.
- Parker, R.G. and Kong, L. (2004), "Approximate eigensolutions of axially moving beams with small flexural stiffness", J. Sound Vib., 276, 459-469. https://doi.org/10.1016/j.jsv.2003.11.027
- Pakdemirli, M. and Batan, H. (1993), "Dynamic stability of a constantly accelerating strip", J. Sound Vib., 168, 371-378. https://doi.org/10.1006/jsvi.1993.1379
- Pakdemirli, M., Ulsoy, A.G. and Ceranoglu, A. (1994), "Transverse vibration of an axially accelerating string", J. Sound Vib., 169, 179-196. https://doi.org/10.1006/jsvi.1994.1012
- Pakdemirli, M. (1994), "A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities", Mech. Res. Comm., 21, 203-208. https://doi.org/10.1016/0093-6413(94)90093-0
- Pakdemirli, M., Nayfeh, S.A. and Nayfeh, A.H. (1995), "Analysis of one-to-one autoparametric resonances in cables-discretization vs direct treatment", Nonlin. Dyn., 8, 65-83. https://doi.org/10.1088/0951-7715/8/1/005
- Pakdemirli, M. and Boyaci, H. (1995), "Comparison of direct-perturbation methods with discretizationperturbation methods for nonlinear vibrations", J. Sound Vib., 186, 837-845. https://doi.org/10.1006/jsvi.1995.0491
- Pakdemirli, M. and Ulsoy, A.G. (1997), "Stability analysis of an axially accelerating string", J. Sound Vib., 203(5), 815-832. https://doi.org/10.1006/jsvi.1996.0935
- Pakdemirli, M. and Boyaci, H. (1997), "The direct-perturbation method versus the discretization-perturbation method: Linear systems", J. Sound Vib., 199(5), 825-832. https://doi.org/10.1006/jsvi.1996.0643
- Pakdemirli, M. and Ozkaya E. (1998), "Approximate boundary layer solution of a moving beam problem", Math. Comput. Appl., 2(3), 93-100.
- Pakdemirli, M. and Boyaci, H. (2001), "Vibrations of a stretched beam with non-ideal boundary conditions", Math. Comput. Appl., 6(3), 217-220.
- Pakdemirli, M. and Boyaci, H. (2002), "Effect of non-ideal boundary conditions on the vibrations of continuous systems", J. Sound Vib., 249(4), 815-823. https://doi.org/10.1006/jsvi.2001.3760
- Pakdemirli, M. and Boyaci, H. (2003), "Nonlinear vibrations of a simple-simple beam with a non-ideal support in between", J. Sound Vib., 268, 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Ponomareva, S.V. and van Horssen, W.T. (2009), "On the transversal vibrations of an axially moving continuum with a time-varying velocity: Transient from string to beam behavior", J. Sound Vib., 325, 959-973. https://doi.org/10.1016/j.jsv.2009.03.038
- Tekin, A., Ozkaya, E. and Bagdatli, S.M. (2009), "Three-to one internal resonances in multi stepped beam systems", Appl. Math. Mech.-English Edition, 30(9), 1131-1142. https://doi.org/10.1007/s10483-009-0907-x
- Ulsoy, A.G., Mote, C.D. Jr. and Syzmani, R. (1978), "Principal developments in band saw vibration and stability research", Holz als Roh- und Werkstoff, 36, 273-280. https://doi.org/10.1007/BF02610748
- Wickert, J.A. and Mote, C.D. Jr. (1988), "Current research on the vibration and stability of axially moving materials", Shock Vib. Dig., 20(5), 3-13. https://doi.org/10.1177/058310248802000503
- Wickert, J.A. and Mote, C.D. Jr. (1990), "Classical vibration analysis of axially moving continua", J. Appl. Mech., ASME, 57, 738-744. https://doi.org/10.1115/1.2897085
- Wickert, J.A. (1992), "Non-linear vibration of a traveling tensioned beam", Int. J. Nonlin. Mech., 27, 503-517. https://doi.org/10.1016/0020-7462(92)90016-Z
Cited by
- Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
- Free vibration analysis of axially moving beam under non-ideal conditions vol.54, pp.3, 2015, https://doi.org/10.12989/sem.2015.54.3.597
- Dynamics of axially accelerating beams with multiple supports vol.74, pp.1-2, 2013, https://doi.org/10.1007/s11071-013-0961-1
- Nonlinear vibrations of spring-supported axially moving string vol.81, pp.3, 2015, https://doi.org/10.1007/s11071-015-2086-1
- Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation vol.23, pp.7, 2017, https://doi.org/10.1177/1077546315589666
- Vibration of axially moving beam supported by viscoelastic foundation vol.38, pp.2, 2017, https://doi.org/10.1007/s10483-017-2170-9
- Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
- Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.281
- Free and forced nonlinear vibration of a transporting belt with pulley support ends vol.92, pp.4, 2018, https://doi.org/10.1007/s11071-018-4179-0
- Free vibrations of fluid conveying microbeams under non-ideal boundary conditions vol.24, pp.2, 2012, https://doi.org/10.12989/scs.2017.24.2.141
- Influence of roll-to-roll system’s dynamics on axially moving web vibration vol.21, pp.3, 2012, https://doi.org/10.21595/jve.2018.19872