References
- Bolotion, V.V. (1965), The Dynamic Stability of Elastic Systems, Holden Day, New York.
- Briseghella, L., Majorana, C.E. and Pellegrino, C. (1998), "Dynamic stability of elastic structures: a finite element approach", Comput. Struct., 69, 11-25. https://doi.org/10.1016/S0045-7949(98)00084-4
- Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pres. Ves. Pip., 84, 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001
- Civalek, O. (2008a), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181.
- Civalek, O. (2008b), "Discrete singular convolution for bucking analysis of plates and columns", Struct. Eng. Mech., 29, 279-288. https://doi.org/10.12989/sem.2008.29.3.279
- Civalek, O. and Gürses, M. (2009), "Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique", Int. J. Pres. Ves. Pip., 86, 677-683. https://doi.org/10.1016/j.ijpvp.2009.03.011
- Evan-Iwanowski, R.M. (1965), "On the parametric response of structures", Appl. Mech. Rev., 18, 699-702.
- Iwatsubo, T., Sugiyama, Y. and Ishihara, K. (1972), "Stability and non-stationary vibration of columns under periodic loads", J. Sound Vib., 23, 245-257. https://doi.org/10.1016/0022-460X(72)90564-0
- Iwatsubo, T., Saigo, M. and Sugiyama, Y. (1973), "Parametric stability of clamped - clamped and clampedsimply supported columns under periodic axial load", J. Sound Vib., 30, 65-77. https://doi.org/10.1016/S0022-460X(73)80050-1
- Lee, H.P. (1996), "Damping effects on the dynamic stability of a rod subjected to intermediate follower loads", Comput. Meth. Appl. Mech. Eng., 131, 147-157. https://doi.org/10.1016/0045-7825(95)00937-X
- Lim, C.W., Li, Z.R., Xiang, Y., Wei, G.W. and Wang, C.M. (2005), "On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates", Adv. Vib. Eng., 4, 221-248.
- Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore.
- Saffari, H., Mohammadnejad, M. and Bagheripour, M.H. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., 43, 561-582. https://doi.org/10.12989/sem.2012.43.5.561
- Wei, G.W. (1999), "Discrete singular convolution for the solution of the Fokker-Planck equations", J. Chem. Phys., 110, 8930-8942. https://doi.org/10.1063/1.478812
- Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553. https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
- Wei, G.W., Zhou, Y.C. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946. https://doi.org/10.1002/nme.526
- Yu, S.N., Zhou, Y.C. and Wei, G.W. (2006), "Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces", J. Comput. Phys., 224, 729-756.
- Yu, S.N., Xiang, Y. and Wei, G.W. (2009), "Matched interface and boundary (MIB) method for the vibration", Commun. Numer. Meth. Eng., 25, 923-950. https://doi.org/10.1002/cnm.1130
- Zhao, S. and Wei, G. W. (2004), "High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces", J. Comput. Phys., 200, 60-103. https://doi.org/10.1016/j.jcp.2004.03.008
- Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beams by an iteratively matched boundary method" J. Sound Vib., 284, 487-493. https://doi.org/10.1016/j.jsv.2004.08.037
- Zhao, Y.B. and Wei, G.W. (2002), "DSC analysis of rectangular plates with nonuniform boundary conditions", J. Sound Vib., 255, 203-228. https://doi.org/10.1006/jsvi.2001.4150
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
Cited by
- Dynamic Stability Analysis of Beams with Shear Deformation and Rotary Inertia Subjected to Periodic Axial Forces by Using Discrete Singular Convolution Method vol.142, pp.3, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001023
- Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
- Dynamic Instability Analysis of a Rotating Ship Shaft under a Periodic Axial Force by Discrete Singular Convolution vol.2015, 2015, https://doi.org/10.1155/2015/482607
- Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support vol.2, pp.2, 2013, https://doi.org/10.12989/csm.2013.2.2.159
- Discrete Singular Convolution Method for Dynamic Stability Analysis of Beams under Periodic Axial Forces vol.141, pp.10, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000931
- Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method vol.52, pp.4-5, 2017, https://doi.org/10.1007/s11012-016-0457-4
- Free vibration analysis of beams with various interfaces by using a modified matched interface and boundary method vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.001
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2012, https://doi.org/10.1007/s11831-019-09365-5