DOI QR코드

DOI QR Code

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M. (Mechanical Engineering Department, Zagazig University) ;
  • Mahmoud, F.F. (Mechanical Engineering Department, Zagazig University) ;
  • Alshorbagy, A.E. (Mechanical Engineering Department, Zagazig University) ;
  • Alieldin, S.S. (Mechanical Engineering Department, Zagazig University) ;
  • Meletis, E.I. (Material Science and Engineering Department, University of Texas at Arlington)
  • 투고 : 2012.02.14
  • 심사 : 2012.10.24
  • 발행 : 2012.11.25

초록

In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

키워드

참고문헌

  1. Aboudi, J. (1991), Mechanics of Composite Materials - A Unified Micromechanical Approach, Elsevier, Amsterdam.
  2. Afsar, A.M. and Go, J. (2010), "Finite element analysis of thermoelastic field in a rotating FGM circular disk", J. Appl. Math. Model., 34, 3309-3320. https://doi.org/10.1016/j.apm.2010.02.022
  3. Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", J. Compos. Struct., 92, 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003
  4. Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J., 53-62. https://doi.org/10.1016/j.asej.2011.05.003
  5. Cammarata, R.C. and Sieradzki, K. (1989), "Effects of surface stress on the elastic moduli of thin films and superlattices", Phys. Rev. Lett., 62, 2005-2008. https://doi.org/10.1103/PhysRevLett.62.2005
  6. Cammarata, R.C. (1994), "Surface and interface stress effects in thin-films", Prog. Surf. Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1
  7. Craighead, H.G. (2000), "Nanoelectromechanical systems", Science, 290, 1532-1535. https://doi.org/10.1126/science.290.5496.1532
  8. Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53, 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
  9. Dingreville, R. and Qu, J. (2008), "Interfacial excess energy, excess stress and excess strain in elastic solids: planer interfaces", J. Mech. Phys. Solids, 56, 1944-1954. https://doi.org/10.1016/j.jmps.2007.11.003
  10. Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M. and Craighead, H.G. (1999), "Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillations", J. Appl. Phys., Rev. B, 69, 165410.
  11. Gibbs, J.W. (1961), "On the equilibrium of hetrogenious substances", (Ed. Willard Gibbs), The Scientific Papers of Thermodynamics, Vol. 1, Dover, New York.
  12. Guo, J.G. and Zhao, Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98(7), 074306. https://doi.org/10.1063/1.2071453
  13. Gurtin, M.E. and Murdoch, A.I. (1975a), "A continuum theory of elastic material surface", Arch. Rat. Mech. Anal., 57, 291-323.
  14. Gurtin, M.E. and Murdoch, A.I. (1975b), "Addenda to our paper: a continuum theory of elastic material surface", Arch. Rat. Mech. Anal., 59, 389-390.
  15. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  16. He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", Int. J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001
  17. He, L.H. and Li, Z.R. (2006), "Impact of surface stress on stress concentration", Int. J. Solids Struct., 43(20), 6208-6219. https://doi.org/10.1016/j.ijsolstr.2005.05.041
  18. Huang, D.W. (2008), "Size-dependent response of ultra-thin films with surface effects", Int. J. Solids Struct., 45, 568-579. https://doi.org/10.1016/j.ijsolstr.2007.08.006
  19. Koizumi, M. (1997), "FGM Activities in Japan", Composites, 28, 1-4.
  20. Lavrik, N.V., Sepaniak, M.J. and Datskos, P.G. (2004), "Cantilever transducers as a platform for chemical and biological sensors", Rev. Sci. Instrum. 75, 2229-2253. https://doi.org/10.1063/1.1763252
  21. Liang, L.H., Li, J.C. and Jiang, Q. (2002), "Size-dependent elastic modulus of Cu and Au thin films", Solid State Commun., 121(8), 453-455. https://doi.org/10.1016/S0038-1098(02)00026-1
  22. Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-scale thickness", Int. J. Mech. Sci., 46(11), 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
  23. Lu, P., He, L.H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solids Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  24. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009a), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  25. Lu, C.F., Chen, W.Q. and Lim, C.W. (2009b), "Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies", Compos. Sci. Tech., 69, 1124-1130. https://doi.org/10.1016/j.compscitech.2009.02.005
  26. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301
  27. Muliana, A.H. (2009), "A micromechanical model for predicting thermal properties and thermo-viscoelastic responses of functionally graded materials", Int. J. Solids Struct., 46, 1911-1924. https://doi.org/10.1016/j.ijsolstr.2009.01.008
  28. Muller, P. and Saul, A. (2004), "Elastic effects on surface physics", Surface Science Reports, 54(5-8), 157-258. https://doi.org/10.1016/j.surfrep.2004.05.001
  29. Murdoch, A.I. (2005), "Some fundamental aspects of surface modeling", J. Elasticity, 80, 33-52. https://doi.org/10.1007/s10659-005-9024-2
  30. Nix, W.D. and Gao, J. (1998), "An atomistic interpretation of interface stress", Scripta Mater., 39, 1653-1661. https://doi.org/10.1016/S1359-6462(98)00352-2
  31. Sharma, P. and Ganti, S. (2004), "Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies", J. Appl. Mech., 71(5), 663-671. https://doi.org/10.1115/1.1781177
  32. Shim, H.W., Zhou, L.G., Huang, H.C. and Cale, T.S. (2005), "Nanoplate elasticity under surface reconstruction", Appl. Phys. Lett., 86(15), 151912. https://doi.org/10.1063/1.1897825
  33. Shuttleworth, R. (1950), "The surface tension of solids", Proc. Royal Soc. Lond. A, 63, 444-457.
  34. Steigmann, D.J. and Ogden, R.W. (1997), "Plane deformations of elastic solids with intrinsic boundary elasticity", Proc. Royal Soc. A, 453, 853-877. https://doi.org/10.1098/rspa.1997.0047
  35. Steigmann, D.J. (1999), "Elastic surface-substrate interactions", Proc. Royal Soc. A, 455, 437-474. https://doi.org/10.1098/rspa.1999.0320
  36. Sun, C.T. and Zhang, H.T. (2003), "Size-dependent elastic moduli platelikenanomaterials", J. Appl. Phys., 93(2), 1212-1218. https://doi.org/10.1063/1.1530365
  37. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, The Institute of Materials, IOM Communications Ltd., London.
  38. Tung, H.V. and DinhDuc, N. (2010), "Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads", J. Compos. Struct., 92, 1184-1191. https://doi.org/10.1016/j.compstruct.2009.10.015
  39. Wang, Z.Q., Zhao, Y.P. and Huang, Z.P. (2010), "The effects of surface tension on the elastic properties of nano structures", Int. J. Eng. Sci., 48, 140-150. https://doi.org/10.1016/j.ijengsci.2009.07.007
  40. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W. and Wang, T. (2011), "Surface stress effect in mechanics of nanostructured materials", Acta Mech. Solida Sin., 24(1), 52-82. https://doi.org/10.1016/S0894-9166(11)60009-8
  41. Wolf, D. (1991), "Surface-stress-induced structure and elastic behavior of thin films", Appl. Phys. Lett., 58, 2081-2083. https://doi.org/10.1063/1.105017
  42. Zhang, H.T. and Sun, C.T. (2004), "Nanoplate model for platelikenanomaterials", AIAA J., 42(10), 2002-2009. https://doi.org/10.2514/1.5282
  43. Zhou, L.G. and Huang, H.C. (2004), "Are surfaces elastically softer or stiffer?", Appl. Phys. Lett., 84, 1940-1942. https://doi.org/10.1063/1.1682698

피인용 문헌

  1. Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories vol.84, 2014, https://doi.org/10.1016/j.ijmecsci.2014.04.020
  2. Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects vol.75, 2013, https://doi.org/10.1016/j.ijmecsci.2013.07.001
  3. A new mindlin FG plate model incorporating microstructure and surface energy effects vol.53, pp.1, 2015, https://doi.org/10.12989/sem.2015.53.1.105
  4. Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams vol.94-95, 2015, https://doi.org/10.1016/j.ijmecsci.2015.02.008
  5. Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory vol.38, pp.8, 2016, https://doi.org/10.1007/s40430-015-0388-3
  6. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects vol.79, 2014, https://doi.org/10.1016/j.ijmecsci.2013.11.022
  7. Size dependent and micromechanical modeling of strain gradient-based nanoparticle composite plates with surface elasticity vol.58, 2016, https://doi.org/10.1016/j.euromechsol.2016.01.005
  8. Finite element analysis of functionally graded nano-scale films vol.74, 2013, https://doi.org/10.1016/j.finel.2013.05.012
  9. Closed-form elasticity solution for three-dimensional deformation of functionally graded micro/nano plates on elastic foundation vol.12, pp.4, 2015, https://doi.org/10.1590/1679-78251398
  10. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads vol.2013, 2013, https://doi.org/10.1155/2013/569781
  11. Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies vol.77, 2013, https://doi.org/10.1016/j.ijmecsci.2013.04.015
  12. Probabilistic analysis of micro-film buckling with parametric uncertainty vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.697
  13. Mode localization phenomenon of functionally graded nanobeams due to surface integrity pp.1573-8841, 2018, https://doi.org/10.1007/s10999-018-9421-x
  14. Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory vol.62, pp.3, 2017, https://doi.org/10.12989/sem.2017.62.3.311