References
- Aboudi, J. (1991), Mechanics of Composite Materials - A Unified Micromechanical Approach, Elsevier, Amsterdam.
- Afsar, A.M. and Go, J. (2010), "Finite element analysis of thermoelastic field in a rotating FGM circular disk", J. Appl. Math. Model., 34, 3309-3320. https://doi.org/10.1016/j.apm.2010.02.022
- Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", J. Compos. Struct., 92, 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003
- Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J., 53-62. https://doi.org/10.1016/j.asej.2011.05.003
- Cammarata, R.C. and Sieradzki, K. (1989), "Effects of surface stress on the elastic moduli of thin films and superlattices", Phys. Rev. Lett., 62, 2005-2008. https://doi.org/10.1103/PhysRevLett.62.2005
- Cammarata, R.C. (1994), "Surface and interface stress effects in thin-films", Prog. Surf. Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1
- Craighead, H.G. (2000), "Nanoelectromechanical systems", Science, 290, 1532-1535. https://doi.org/10.1126/science.290.5496.1532
- Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53, 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
- Dingreville, R. and Qu, J. (2008), "Interfacial excess energy, excess stress and excess strain in elastic solids: planer interfaces", J. Mech. Phys. Solids, 56, 1944-1954. https://doi.org/10.1016/j.jmps.2007.11.003
- Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M. and Craighead, H.G. (1999), "Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillations", J. Appl. Phys., Rev. B, 69, 165410.
- Gibbs, J.W. (1961), "On the equilibrium of hetrogenious substances", (Ed. Willard Gibbs), The Scientific Papers of Thermodynamics, Vol. 1, Dover, New York.
- Guo, J.G. and Zhao, Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98(7), 074306. https://doi.org/10.1063/1.2071453
- Gurtin, M.E. and Murdoch, A.I. (1975a), "A continuum theory of elastic material surface", Arch. Rat. Mech. Anal., 57, 291-323.
- Gurtin, M.E. and Murdoch, A.I. (1975b), "Addenda to our paper: a continuum theory of elastic material surface", Arch. Rat. Mech. Anal., 59, 389-390.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", Int. J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001
- He, L.H. and Li, Z.R. (2006), "Impact of surface stress on stress concentration", Int. J. Solids Struct., 43(20), 6208-6219. https://doi.org/10.1016/j.ijsolstr.2005.05.041
- Huang, D.W. (2008), "Size-dependent response of ultra-thin films with surface effects", Int. J. Solids Struct., 45, 568-579. https://doi.org/10.1016/j.ijsolstr.2007.08.006
- Koizumi, M. (1997), "FGM Activities in Japan", Composites, 28, 1-4.
- Lavrik, N.V., Sepaniak, M.J. and Datskos, P.G. (2004), "Cantilever transducers as a platform for chemical and biological sensors", Rev. Sci. Instrum. 75, 2229-2253. https://doi.org/10.1063/1.1763252
- Liang, L.H., Li, J.C. and Jiang, Q. (2002), "Size-dependent elastic modulus of Cu and Au thin films", Solid State Commun., 121(8), 453-455. https://doi.org/10.1016/S0038-1098(02)00026-1
- Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-scale thickness", Int. J. Mech. Sci., 46(11), 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
- Lu, P., He, L.H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solids Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009a), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Lu, C.F., Chen, W.Q. and Lim, C.W. (2009b), "Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies", Compos. Sci. Tech., 69, 1124-1130. https://doi.org/10.1016/j.compscitech.2009.02.005
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301
- Muliana, A.H. (2009), "A micromechanical model for predicting thermal properties and thermo-viscoelastic responses of functionally graded materials", Int. J. Solids Struct., 46, 1911-1924. https://doi.org/10.1016/j.ijsolstr.2009.01.008
- Muller, P. and Saul, A. (2004), "Elastic effects on surface physics", Surface Science Reports, 54(5-8), 157-258. https://doi.org/10.1016/j.surfrep.2004.05.001
- Murdoch, A.I. (2005), "Some fundamental aspects of surface modeling", J. Elasticity, 80, 33-52. https://doi.org/10.1007/s10659-005-9024-2
- Nix, W.D. and Gao, J. (1998), "An atomistic interpretation of interface stress", Scripta Mater., 39, 1653-1661. https://doi.org/10.1016/S1359-6462(98)00352-2
- Sharma, P. and Ganti, S. (2004), "Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies", J. Appl. Mech., 71(5), 663-671. https://doi.org/10.1115/1.1781177
- Shim, H.W., Zhou, L.G., Huang, H.C. and Cale, T.S. (2005), "Nanoplate elasticity under surface reconstruction", Appl. Phys. Lett., 86(15), 151912. https://doi.org/10.1063/1.1897825
- Shuttleworth, R. (1950), "The surface tension of solids", Proc. Royal Soc. Lond. A, 63, 444-457.
- Steigmann, D.J. and Ogden, R.W. (1997), "Plane deformations of elastic solids with intrinsic boundary elasticity", Proc. Royal Soc. A, 453, 853-877. https://doi.org/10.1098/rspa.1997.0047
- Steigmann, D.J. (1999), "Elastic surface-substrate interactions", Proc. Royal Soc. A, 455, 437-474. https://doi.org/10.1098/rspa.1999.0320
- Sun, C.T. and Zhang, H.T. (2003), "Size-dependent elastic moduli platelikenanomaterials", J. Appl. Phys., 93(2), 1212-1218. https://doi.org/10.1063/1.1530365
- Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, The Institute of Materials, IOM Communications Ltd., London.
- Tung, H.V. and DinhDuc, N. (2010), "Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads", J. Compos. Struct., 92, 1184-1191. https://doi.org/10.1016/j.compstruct.2009.10.015
- Wang, Z.Q., Zhao, Y.P. and Huang, Z.P. (2010), "The effects of surface tension on the elastic properties of nano structures", Int. J. Eng. Sci., 48, 140-150. https://doi.org/10.1016/j.ijengsci.2009.07.007
- Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W. and Wang, T. (2011), "Surface stress effect in mechanics of nanostructured materials", Acta Mech. Solida Sin., 24(1), 52-82. https://doi.org/10.1016/S0894-9166(11)60009-8
- Wolf, D. (1991), "Surface-stress-induced structure and elastic behavior of thin films", Appl. Phys. Lett., 58, 2081-2083. https://doi.org/10.1063/1.105017
- Zhang, H.T. and Sun, C.T. (2004), "Nanoplate model for platelikenanomaterials", AIAA J., 42(10), 2002-2009. https://doi.org/10.2514/1.5282
- Zhou, L.G. and Huang, H.C. (2004), "Are surfaces elastically softer or stiffer?", Appl. Phys. Lett., 84, 1940-1942. https://doi.org/10.1063/1.1682698
Cited by
- Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories vol.84, 2014, https://doi.org/10.1016/j.ijmecsci.2014.04.020
- Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects vol.75, 2013, https://doi.org/10.1016/j.ijmecsci.2013.07.001
- A new mindlin FG plate model incorporating microstructure and surface energy effects vol.53, pp.1, 2015, https://doi.org/10.12989/sem.2015.53.1.105
- Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams vol.94-95, 2015, https://doi.org/10.1016/j.ijmecsci.2015.02.008
- Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory vol.38, pp.8, 2016, https://doi.org/10.1007/s40430-015-0388-3
- Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects vol.79, 2014, https://doi.org/10.1016/j.ijmecsci.2013.11.022
- Size dependent and micromechanical modeling of strain gradient-based nanoparticle composite plates with surface elasticity vol.58, 2016, https://doi.org/10.1016/j.euromechsol.2016.01.005
- Finite element analysis of functionally graded nano-scale films vol.74, 2013, https://doi.org/10.1016/j.finel.2013.05.012
- Closed-form elasticity solution for three-dimensional deformation of functionally graded micro/nano plates on elastic foundation vol.12, pp.4, 2015, https://doi.org/10.1590/1679-78251398
- Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads vol.2013, 2013, https://doi.org/10.1155/2013/569781
- Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies vol.77, 2013, https://doi.org/10.1016/j.ijmecsci.2013.04.015
- Probabilistic analysis of micro-film buckling with parametric uncertainty vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.697
- Mode localization phenomenon of functionally graded nanobeams due to surface integrity pp.1573-8841, 2018, https://doi.org/10.1007/s10999-018-9421-x
- Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory vol.62, pp.3, 2017, https://doi.org/10.12989/sem.2017.62.3.311