DOI QR코드

DOI QR Code

A new method to calculate the equivalent stiffness of the suspension system of a vehicle

  • Zhao, Pinbin (Mechanical Department, Nanling Campus, Jilin University) ;
  • Yao, Guo-Feng (Mechanical Department, Nanling Campus, Jilin University) ;
  • Wang, Min (Mechanical Department, Nanling Campus, Jilin University) ;
  • Wang, Xumin (Mechanical Department, Nanling Campus, Jilin University) ;
  • Li, Jianhui (Mechanical Department, Nanling Campus, Jilin University)
  • 투고 : 2012.01.09
  • 심사 : 2012.10.24
  • 발행 : 2012.11.10

초록

The stiffness of a suspension system is provided by the bushings and the stiffness of the wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel center, which can quickly and widely be used in all kinds of suspension structure. This method can also be used to optimize and design the suspension system. In the example we use the method to calculate the equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness matrix.

키워드

참고문헌

  1. Chen, P.C. and Huang, A.C. (2005), "Adaptive multi-surface sliding control of hydraulic active suspension systems", J. Vib. Control, 11(5), 685-7060. https://doi.org/10.1177/1077546305052788
  2. Crews John, H., Mattson Michael, G. and Buckner Gregory, D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516. https://doi.org/10.1016/j.jsv.2011.05.036
  3. Fialho, I. and Balas, G.J. (2002), "Road adaptive active suspension design using linear parameter-varying gainscheduling", IEEE Tran. Control Syst. Tech., 10(1), 43-54. https://doi.org/10.1109/87.974337
  4. Georgiou, G., Verros, G. and Natsiavas, S. (2007), "Multi-objective optimization of quarter-car models with a passive or semi-active suspension system", Veh. Syst. Dyn., 45(1), 77-92. https://doi.org/10.1080/00423110600812925
  5. Gerrard, M.B. (2005), "The equivalent elastic mechanism: a tool for the analysis and the design of compliant suspension linkages", SAE Technical Paper, 2005-10-1719.
  6. Huang, S.G. and Schimmels, J.M. (2000), "The eigenscrew decomposition of spatial stiffness matrices", IEEE J. Robot. Autom., 16(2), 146-156. https://doi.org/10.1109/70.843170
  7. John, J.H. Mattson, M.G. and Buckner, G.D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516. https://doi.org/10.1016/j.jsv.2011.05.036
  8. JOSIP LONCARIC (1987), "Normal forms of stiffness and compliance matrices", IEEE J. Robot. Autom., 3(6), 567-572. https://doi.org/10.1109/JRA.1987.1087148
  9. Kang, D.O., Heo, S.J. and Kim, M.S. (2011), "Robust design optimization of suspension system by using target cascading method", Int. J. Aut. Tech., 13(1), 109-122.
  10. Li, Y.M. and Liu, Y.G. (2011), "Active vibration control of a modular robot combining a BP neural network with a genetic algorithm", J. Vib. Control, 11(1), 3-17.
  11. Li, Y.M. and Xu, Q.S. (2008), "Stiffness analysis for a 3-PUU parallel kinematic machine", Mech. Mach. Theory, 43(2), 186-200. https://doi.org/10.1016/j.mechmachtheory.2007.02.002
  12. Li, Y.M., Liu, Y.G., Liu, X.P. and Peng, Z.Y. (2004), "Parameter identification and vibration control in modular manipulators", IEEE/ASME T. Mech., 9(4), 700-705. https://doi.org/10.1109/TMECH.2004.839035
  13. Long, Z., He, G. and Xue, S. (2011), "Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array", IEEE Tran. Mag., 47(12), 4717-4724. https://doi.org/10.1109/TMAG.2011.2159237
  14. Metallidis, P., Verros, G. and Natsiavas, S. (2003), "Fault detection and optimal sensor location in vehicle suspensions", J. Vib. Control, 9(3-4), 337-359. https://doi.org/10.1177/107754603030755
  15. Nguyen, Q.H. and Choi, S.B. (2009), "Optimal design of MR shock absorber and application to vehicle suspension", Smart Mater. Struct., 18(3), 035012. https://doi.org/10.1088/0964-1726/18/3/035012
  16. Nishimura, K. and Nozawa, T. (2007), "Development of suspension design technology applying principal elastic axes", SAE Technical Paper, 2007-01-0857.
  17. Patterson, T. and Lipkin, H. (1993), "A classification of robot compliance", J. Adv. Mech. Des. Syst., 115(3), 581-584.
  18. Verros, G., Nastiavas, S. and Papadimitriou, C. (2005), "Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation", J. Vib. Control, 11(5), 581-606. https://doi.org/10.1177/1077546305052315
  19. Yun, Y. and Li, Y.M. (2011), "A general dynamics and control model of a class of multi-DOF manipulators for active vibration control", Mech. Mach. Theory, 46(10), 1549-1574. https://doi.org/10.1016/j.mechmachtheory.2011.04.010

피인용 문헌

  1. A new methodology to calculate the equivalent stiffness matrix of the suspension structure with flexible linkages vol.9, pp.7, 2017, https://doi.org/10.1177/1687814017700548
  2. Feedback control design for intelligent structures with closely-spaced eigenvalues vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.903