References
- Chen, P.C. and Huang, A.C. (2005), "Adaptive multi-surface sliding control of hydraulic active suspension systems", J. Vib. Control, 11(5), 685-7060. https://doi.org/10.1177/1077546305052788
- Crews John, H., Mattson Michael, G. and Buckner Gregory, D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516. https://doi.org/10.1016/j.jsv.2011.05.036
- Fialho, I. and Balas, G.J. (2002), "Road adaptive active suspension design using linear parameter-varying gainscheduling", IEEE Tran. Control Syst. Tech., 10(1), 43-54. https://doi.org/10.1109/87.974337
- Georgiou, G., Verros, G. and Natsiavas, S. (2007), "Multi-objective optimization of quarter-car models with a passive or semi-active suspension system", Veh. Syst. Dyn., 45(1), 77-92. https://doi.org/10.1080/00423110600812925
- Gerrard, M.B. (2005), "The equivalent elastic mechanism: a tool for the analysis and the design of compliant suspension linkages", SAE Technical Paper, 2005-10-1719.
- Huang, S.G. and Schimmels, J.M. (2000), "The eigenscrew decomposition of spatial stiffness matrices", IEEE J. Robot. Autom., 16(2), 146-156. https://doi.org/10.1109/70.843170
- John, J.H. Mattson, M.G. and Buckner, G.D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516. https://doi.org/10.1016/j.jsv.2011.05.036
- JOSIP LONCARIC (1987), "Normal forms of stiffness and compliance matrices", IEEE J. Robot. Autom., 3(6), 567-572. https://doi.org/10.1109/JRA.1987.1087148
- Kang, D.O., Heo, S.J. and Kim, M.S. (2011), "Robust design optimization of suspension system by using target cascading method", Int. J. Aut. Tech., 13(1), 109-122.
- Li, Y.M. and Liu, Y.G. (2011), "Active vibration control of a modular robot combining a BP neural network with a genetic algorithm", J. Vib. Control, 11(1), 3-17.
- Li, Y.M. and Xu, Q.S. (2008), "Stiffness analysis for a 3-PUU parallel kinematic machine", Mech. Mach. Theory, 43(2), 186-200. https://doi.org/10.1016/j.mechmachtheory.2007.02.002
- Li, Y.M., Liu, Y.G., Liu, X.P. and Peng, Z.Y. (2004), "Parameter identification and vibration control in modular manipulators", IEEE/ASME T. Mech., 9(4), 700-705. https://doi.org/10.1109/TMECH.2004.839035
- Long, Z., He, G. and Xue, S. (2011), "Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array", IEEE Tran. Mag., 47(12), 4717-4724. https://doi.org/10.1109/TMAG.2011.2159237
- Metallidis, P., Verros, G. and Natsiavas, S. (2003), "Fault detection and optimal sensor location in vehicle suspensions", J. Vib. Control, 9(3-4), 337-359. https://doi.org/10.1177/107754603030755
- Nguyen, Q.H. and Choi, S.B. (2009), "Optimal design of MR shock absorber and application to vehicle suspension", Smart Mater. Struct., 18(3), 035012. https://doi.org/10.1088/0964-1726/18/3/035012
- Nishimura, K. and Nozawa, T. (2007), "Development of suspension design technology applying principal elastic axes", SAE Technical Paper, 2007-01-0857.
- Patterson, T. and Lipkin, H. (1993), "A classification of robot compliance", J. Adv. Mech. Des. Syst., 115(3), 581-584.
- Verros, G., Nastiavas, S. and Papadimitriou, C. (2005), "Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation", J. Vib. Control, 11(5), 581-606. https://doi.org/10.1177/1077546305052315
- Yun, Y. and Li, Y.M. (2011), "A general dynamics and control model of a class of multi-DOF manipulators for active vibration control", Mech. Mach. Theory, 46(10), 1549-1574. https://doi.org/10.1016/j.mechmachtheory.2011.04.010
Cited by
- A new methodology to calculate the equivalent stiffness matrix of the suspension structure with flexible linkages vol.9, pp.7, 2017, https://doi.org/10.1177/1687814017700548
- Feedback control design for intelligent structures with closely-spaced eigenvalues vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.903