DOI QR코드

DOI QR Code

Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams

  • Anandrao, K. Sanjay (Advanced Systems Laboratory) ;
  • Gupta, R.K. (Advanced Systems Laboratory) ;
  • Ramchandran, P. (DRDL) ;
  • Rao, G. Venkateswara (Department of Mechanical Engineering, Vardhaman College of Engineering)
  • Received : 2011.11.09
  • Accepted : 2012.10.24
  • Published : 2012.11.10

Abstract

Large amplitude free vibration and thermal post-buckling of shear flexible Functionally Graded Material (FGM) beams is studied using finite element formulation based on first order Timoshenko beam theory. Classical boundary conditions are considered. The ends are assumed to be axially immovable. The von-Karman type strain-displacement relations are used to account for geometric non-linearity. For all the boundary conditions considered, hardening type of non-linearity is observed. For large amplitude vibration of FGM beams, a comprehensive study has been carried out with various lengths to height ratios, maximum lateral amplitude to radius of gyration ratios, volume fraction exponents and boundary conditions. It is observed that, for FGM beams, the non-linear frequencies are dependent on the sign of the vibration amplitudes. For thermal post-buckling of FGM beams, the effect of shear flexibility on the structural response is discussed in detail for different volume fraction exponents, length to height ratios and boundary conditions. The effect of shear flexibility is observed to be predominant for clamped beam as compared to simply supported beam.

Keywords

References

  1. Aboudi, J., Pindera, M.J. and Arnold, S.M. (1999), "Higher order theory for functionally graded materials", Compos. Part B-Eng., 30, 777-832. https://doi.org/10.1016/S1359-8368(99)00053-0
  2. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Applied Mathematical Modeling, 35, 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  3. Anandrao, S.K., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
  4. ANSYS Inc. ANSYS package version 10.0, Canons Burgh, PA, USA.
  5. Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282, 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
  6. Birman, V. and Byrd, L.W. (2007), "Vibrations of damaged cantilever beams manufactured from functionally graded materials", AIAA J., 45(11), 2747-2757. https://doi.org/10.2514/1.30076
  7. Chakraborty, A., Gopalkrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45, 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  8. Deschilder, M., Eslami, H. and Zhao, Y. (2006), "Non-linear static analysis of a beam made of functionally graded material", Proceedings of 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island.
  9. Gupta, R.K., Jagadish, G.B., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem. Anal. Des., 45, 624-631. https://doi.org/10.1016/j.finel.2009.04.001
  10. Hesham, H.I. (2007), "Thermal buckling and nonlinear flutter behavior of functionally graded material panels", J. Aircraft, 44(5), 1610-1618. https://doi.org/10.2514/1.27866
  11. Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551
  12. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45, 743-752. https://doi.org/10.1007/s11012-009-9276-1
  13. Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Non-linear vibration of edge cracked functionally graded Timoshenko beams", J. Sound Vib., 324, 962-982. https://doi.org/10.1016/j.jsv.2009.02.023
  14. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans., 34(1), 3-10.
  15. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318, 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  16. Mei, C. (1973), "Finite element analysis of non-linear vibrations of beam columns", AIAA J., 11, 115-117. https://doi.org/10.2514/3.6683
  17. Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM plates using finite element method", Composites: Part B, 37, 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
  18. Prakash, T., Singh, M.K. and Ganapathi, M. (2006), "Vibrations and thermal stability of functionally graded spherical caps", Struct. Eng. Mech., 24(4), 447-462. https://doi.org/10.12989/sem.2006.24.4.447
  19. Raju, K.K. and Rao, G.V. (1984), "A note on large amplitude vibrations", Comput. Struct., 18(6), 1189-1191. https://doi.org/10.1016/0045-7949(84)90164-0
  20. Raju, K.K. and Rao, G.V. (2005), "Towards improved evaluation of large amplitude free vibration behavior of uniform beams using multi-term admissible functions", J. Sound Vib., 282, 1238-1246. https://doi.org/10.1016/j.jsv.2004.04.036
  21. Rao, G.V. and Raju, P.C. (1977), "Post-buckling of uniform cantilever columns - Galerkin finite element formulation", Eng. Fract. Mech., 9, 1-4. https://doi.org/10.1016/0013-7944(77)90046-7
  22. Rao, G.V. and Raju, K.K. (1978), "Large amplitude vibrations of beams with elastically restrained ends", J. Sound Vib., 57(2), 302-304. https://doi.org/10.1016/0022-460X(78)90587-4
  23. Rao, G.V. and Raju, K.K. (1984), "Thermal post buckling of columns", AIAA, 22(6), 850-851. https://doi.org/10.2514/3.8695
  24. Rao, G.V. and Raju, K.K. (2002), "Thermal post buckling of uniform Columns: A simple intuitive method", AIAA J., 40(10), 2138-2140. https://doi.org/10.2514/2.1553
  25. Rao, G.V. and Raju, K.K. (2002), "A direct numerical integration method to study the large amplitude vibration of slender beams with immovable ends", J. Inst. Eng., 83, 42-44.
  26. Rao, G.V. and Raju, K.K. (2003), "A simple method to predict the thermal post-buckling behavior of columns on Pasternak foundation", Ind. J. Eng. Mater. Sci., 10, 177-182.
  27. Rao, G.V. (2003), "A simple energy method to predict the thermal post buckling behavior of columns", J. Aeros. Sci. Tech., 55(2), 141-143.
  28. Rao, S.S. (2007), Vibration of Continuous System, John Wiley & Sons, Inc.
  29. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York.
  30. Reddy, J.N. (2004), An Introduction to Non-linear Finite Element Analysis, Oxford University Press, USA.
  31. Sang-Lae, L. and Ji-Hwan, K. (2007), "Thermal stability boundary of FG panel under aerodynamic load", Int. J. Mech. Syst. Sci. Eng., 1(2), 105-110.
  32. Sathyamoorthy, M. (1998), Nonlinear Analysis of Structures, CRC Mechanical Engineering Series, CRC Press, Boca Raton, 26-38.
  33. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30, 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
  34. Singh, G., Sharma, A.K. and Rao, G.V. (1990), "Large amplitude free vibrations of beams - a discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L
  35. Singh, G., Rao, G.V. and Iyengar, N.G.R. (1990), "Re-investigation of large amplitude free vibrations of beams using finite elements", J. Sound Vib., 143, 351-355. https://doi.org/10.1016/0022-460X(90)90958-3
  36. Srinivasan, A.V. (1965), "Large amplitude free oscillations of beams and plates", AIAA J., 3(10), 1951-1953. https://doi.org/10.2514/3.3290
  37. Sung-Cheon, H., Gilson, R.L. and Ki-Du, K. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four node quasi conforming shell element", Int. J. Struct. Stab. D., 8(2), 203-229. https://doi.org/10.1142/S0219455408002624
  38. Thivend, J., Habib, E. and Yi, Z. (2008), "Thermal post buckling analysis of FGM beams", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2008-2272.
  39. Timoshenko, S.P. and Gere, J.M. (1970), Theory of Elastic Stability, McGraw-Hill.
  40. Woinowsky - Krieger, S. (1950), "The effect of an axial force on the vibrations of hinged bars", Tran. ASME, J. Appl. Mech., 17, 35-36.
  41. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83, 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006

Cited by

  1. Post-buckling finite strip analysis of thick functionally graded plates vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.569
  2. Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
  3. Large post-buckling behavior of Timoshenko beams under axial compression loads vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.955
  4. Vibration analysis of functionally graded material (FGM) grid systems vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.395
  5. Post-Buckling Analysis of Axially Functionally Graded Three-Dimensional Beams vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500477
  6. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments vol.81, 2014, https://doi.org/10.1016/j.ijmecsci.2014.02.020
  7. A new first shear deformation beam theory based on neutral surface position for functionally graded beams vol.15, pp.5, 2013, https://doi.org/10.12989/scs.2013.15.5.467
  8. Post-Buckling Analysis of Edge Cracked Columns Under Axial Compression Loads vol.08, pp.08, 2016, https://doi.org/10.1142/S1758825116500861
  9. Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178