References
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (1999), "Higher order theory for functionally graded materials", Compos. Part B-Eng., 30, 777-832. https://doi.org/10.1016/S1359-8368(99)00053-0
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Applied Mathematical Modeling, 35, 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Anandrao, S.K., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- ANSYS Inc. ANSYS package version 10.0, Canons Burgh, PA, USA.
- Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282, 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
- Birman, V. and Byrd, L.W. (2007), "Vibrations of damaged cantilever beams manufactured from functionally graded materials", AIAA J., 45(11), 2747-2757. https://doi.org/10.2514/1.30076
- Chakraborty, A., Gopalkrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45, 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Deschilder, M., Eslami, H. and Zhao, Y. (2006), "Non-linear static analysis of a beam made of functionally graded material", Proceedings of 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island.
- Gupta, R.K., Jagadish, G.B., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem. Anal. Des., 45, 624-631. https://doi.org/10.1016/j.finel.2009.04.001
- Hesham, H.I. (2007), "Thermal buckling and nonlinear flutter behavior of functionally graded material panels", J. Aircraft, 44(5), 1610-1618. https://doi.org/10.2514/1.27866
- Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45, 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Non-linear vibration of edge cracked functionally graded Timoshenko beams", J. Sound Vib., 324, 962-982. https://doi.org/10.1016/j.jsv.2009.02.023
- Koizumi, M. (1993), "The concept of FGM", Ceram. Trans., 34(1), 3-10.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318, 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Mei, C. (1973), "Finite element analysis of non-linear vibrations of beam columns", AIAA J., 11, 115-117. https://doi.org/10.2514/3.6683
- Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM plates using finite element method", Composites: Part B, 37, 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
- Prakash, T., Singh, M.K. and Ganapathi, M. (2006), "Vibrations and thermal stability of functionally graded spherical caps", Struct. Eng. Mech., 24(4), 447-462. https://doi.org/10.12989/sem.2006.24.4.447
- Raju, K.K. and Rao, G.V. (1984), "A note on large amplitude vibrations", Comput. Struct., 18(6), 1189-1191. https://doi.org/10.1016/0045-7949(84)90164-0
- Raju, K.K. and Rao, G.V. (2005), "Towards improved evaluation of large amplitude free vibration behavior of uniform beams using multi-term admissible functions", J. Sound Vib., 282, 1238-1246. https://doi.org/10.1016/j.jsv.2004.04.036
- Rao, G.V. and Raju, P.C. (1977), "Post-buckling of uniform cantilever columns - Galerkin finite element formulation", Eng. Fract. Mech., 9, 1-4. https://doi.org/10.1016/0013-7944(77)90046-7
- Rao, G.V. and Raju, K.K. (1978), "Large amplitude vibrations of beams with elastically restrained ends", J. Sound Vib., 57(2), 302-304. https://doi.org/10.1016/0022-460X(78)90587-4
- Rao, G.V. and Raju, K.K. (1984), "Thermal post buckling of columns", AIAA, 22(6), 850-851. https://doi.org/10.2514/3.8695
- Rao, G.V. and Raju, K.K. (2002), "Thermal post buckling of uniform Columns: A simple intuitive method", AIAA J., 40(10), 2138-2140. https://doi.org/10.2514/2.1553
- Rao, G.V. and Raju, K.K. (2002), "A direct numerical integration method to study the large amplitude vibration of slender beams with immovable ends", J. Inst. Eng., 83, 42-44.
- Rao, G.V. and Raju, K.K. (2003), "A simple method to predict the thermal post-buckling behavior of columns on Pasternak foundation", Ind. J. Eng. Mater. Sci., 10, 177-182.
- Rao, G.V. (2003), "A simple energy method to predict the thermal post buckling behavior of columns", J. Aeros. Sci. Tech., 55(2), 141-143.
- Rao, S.S. (2007), Vibration of Continuous System, John Wiley & Sons, Inc.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York.
- Reddy, J.N. (2004), An Introduction to Non-linear Finite Element Analysis, Oxford University Press, USA.
- Sang-Lae, L. and Ji-Hwan, K. (2007), "Thermal stability boundary of FG panel under aerodynamic load", Int. J. Mech. Syst. Sci. Eng., 1(2), 105-110.
- Sathyamoorthy, M. (1998), Nonlinear Analysis of Structures, CRC Mechanical Engineering Series, CRC Press, Boca Raton, 26-38.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30, 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Singh, G., Sharma, A.K. and Rao, G.V. (1990), "Large amplitude free vibrations of beams - a discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L
- Singh, G., Rao, G.V. and Iyengar, N.G.R. (1990), "Re-investigation of large amplitude free vibrations of beams using finite elements", J. Sound Vib., 143, 351-355. https://doi.org/10.1016/0022-460X(90)90958-3
- Srinivasan, A.V. (1965), "Large amplitude free oscillations of beams and plates", AIAA J., 3(10), 1951-1953. https://doi.org/10.2514/3.3290
- Sung-Cheon, H., Gilson, R.L. and Ki-Du, K. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four node quasi conforming shell element", Int. J. Struct. Stab. D., 8(2), 203-229. https://doi.org/10.1142/S0219455408002624
- Thivend, J., Habib, E. and Yi, Z. (2008), "Thermal post buckling analysis of FGM beams", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2008-2272.
- Timoshenko, S.P. and Gere, J.M. (1970), Theory of Elastic Stability, McGraw-Hill.
- Woinowsky - Krieger, S. (1950), "The effect of an axial force on the vibrations of hinged bars", Tran. ASME, J. Appl. Mech., 17, 35-36.
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83, 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
Cited by
- Post-buckling finite strip analysis of thick functionally graded plates vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.569
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Large post-buckling behavior of Timoshenko beams under axial compression loads vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.955
- Vibration analysis of functionally graded material (FGM) grid systems vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.395
- Post-Buckling Analysis of Axially Functionally Graded Three-Dimensional Beams vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500477
- Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments vol.81, 2014, https://doi.org/10.1016/j.ijmecsci.2014.02.020
- A new first shear deformation beam theory based on neutral surface position for functionally graded beams vol.15, pp.5, 2013, https://doi.org/10.12989/scs.2013.15.5.467
- Post-Buckling Analysis of Edge Cracked Columns Under Axial Compression Loads vol.08, pp.08, 2016, https://doi.org/10.1142/S1758825116500861
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178