DOI QR코드

DOI QR Code

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load

  • Mirzaei, M. (Department of Mechanical Engineering, Islamic Azad University, Damavand Branch) ;
  • Akbarshahi, H. (Department of Mechanical Engineering, Amirkabir University of Technology) ;
  • Shakeri, M. (Department of Mechanical Engineering, Amirkabir University of Technology) ;
  • Sadighi, M. (Department of Mechanical Engineering, Amirkabir University of Technology)
  • 투고 : 2011.02.28
  • 심사 : 2012.10.24
  • 발행 : 2012.11.10

초록

In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.

키워드

참고문헌

  1. Acar, E., Guler, M.A., Gerc-eker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin Wall. Struct., 49, 94-105. https://doi.org/10.1016/j.tws.2010.08.010
  2. Andrews, K.R.F., England, G.L. and Ghani, E. (1983), "Classification of the axial collapse of cylindrical tubes under quasi-static loading", Int. J. Mech. Sci., 25(9-10), 687-696. https://doi.org/10.1016/0020-7403(83)90076-0
  3. Alghamdi, A.A.A. (2001), "Collapsible impact energy absorbers: An Overview", Thin Wall. Struct., 39, 189-213. https://doi.org/10.1016/S0263-8231(00)00048-3
  4. Bi, J., Fang, H., Wang, Q. and Ren, X. (2010), "Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs", Finite Elem. Anal. Des., 46, 698-709. https://doi.org/10.1016/j.finel.2010.03.008
  5. Deb, K. (2001), Multi-objective Optimization Using Evolutionary Algorithms, Springer-Verlag Berlin Heidelberg.
  6. Deb, K. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE T. Evolut. Comput., 6(2), 182-97. https://doi.org/10.1109/4235.996017
  7. Demuth, H.B., Beale, M. and Hagan, M.T. (2007), Neural Network Toolbox 5 User's Guide, The MathWorks, Inc.
  8. Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Compos. Struct., 83(25-26), 2121-36. https://doi.org/10.1016/j.compstruc.2005.02.025
  9. Guillow, S.R., Lu, G. and Grzebieta, R.H. (2001), "Quasi-static axial compression of thin-walled circular aluminum tubes", Int. J. Mech. Sci., 43, 2103-123. https://doi.org/10.1016/S0020-7403(01)00031-5
  10. Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2007), "Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43, 555-65. https://doi.org/10.1016/j.finel.2006.12.008
  11. Hou, S., Han, X., Sun, G., Long, S., Li, W., Yang, X. and Li, Q. (2011), "Multiobjective optimization for tapered circular tubes", Thin Wall. Struct., 49, 855-863. https://doi.org/10.1016/j.tws.2011.02.010
  12. Hsu, S.S. and Jones, N. (2004), "Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminum alloy tubes", J. Crashworthiness, 9(2), 195-217. https://doi.org/10.1533/ijcr.2004.0282
  13. Jiang, Z. and Gu, M. (2010), "Optimization of a fender structure for the crashworthiness design", Mater. Des., 31, 1085-1095. https://doi.org/10.1016/j.matdes.2009.09.047
  14. Karagiozava, D. and Jones, N. (2000), "Inertia effects in axisymmetrically deformed cylindrical shells under axial impact", Int. J. Impact Eng., 24, 1083-1115. https://doi.org/10.1016/S0734-743X(00)00028-2
  15. Lanzi, L., Bisagni, S. and Ricci, S. (2004), "Neural network systems to reproduce crash behavior of structural components", Comput. Struct., 82, 93-10. https://doi.org/10.1016/j.compstruc.2003.06.001
  16. Lanzi, L., Castelleti, L.M.L. and Anghileri, M. (2004), "Multi-objective optimisation of composite absorber shape under crashworthiness requirements", Comput. Struct., 65, 433-441. https://doi.org/10.1016/j.compstruct.2003.12.005
  17. Lanzi, L., Bisagni, C. and Ricci, S. (2004), "Crashworthiness optimization of helicopter subfloor based on decomposition and global approximation", Struct. Multidiscip. O., 27, 401-410.
  18. Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Pr. Technol., 130-131, 490-496. https://doi.org/10.1016/S0924-0136(02)00794-X
  19. Liu, Y. (2008), "Crashworthiness design of multi-corner thin-walled columns", Thin Wall. Struct., 46, 1329-1337. https://doi.org/10.1016/j.tws.2008.04.003
  20. Mirzaei, M., Shakeri, M., Seddighi, M. and Seyedi, S.E. (2010), "Using of neural network and genetic algorithm in multi-objective optimization of collapsible energy absorbers", Proceeding of 2th Eng. Opt. Conf., Lisbon, Portugal.
  21. Rosenblatt, F. (1986), "The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review", Psych. Rev., 65, 386-408.
  22. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagation errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0
  23. Salehghaffari, S., Rais-Rohani, M. and Najafi, A. (2011), "Analysis and optimization of externally stiffened crush tubes", Thin Wall. Struct., 49, 397-408. https://doi.org/10.1016/j.tws.2010.11.010
  24. Stander, N., Roux, W., Giger, M., Redhe, M., Fedorova, N. and Haarhoff, J. (2004), "A comparison of metamodeling techniques for crashworthiness optimization", Proceeding of 10th AIAA/ISSMO Conf., Albany, NewYork, paper AIAA 2004-4489.
  25. Shakeri, M., Mirzaeifar, R. and Salehghaffari, S. (2007), "New insights into the collapsing of cylindrical thinwalled tubes under axial impact Load", Int. J. Mech. Sci., 221(8), 869-886.
  26. Shakeri, M., Beiglou, A.A. and Ghajari, M. (2004), "Numerical analysis of axisymmetric collapse of cylindrical tubes under axial loading", Proceedings of the Seventh CST Conf., Lisbon, Portugal.
  27. Yamazaki, K. and Han, J. (2000), "Maximization of the crushing energy absorption of cylindrical shells", Adv. Eng. Soft., 31, 425-34. https://doi.org/10.1016/S0965-9978(00)00004-1
  28. Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mat. Des., 32, 4449-4460. https://doi.org/10.1016/j.matdes.2011.03.060
  29. Zarei, H.R. and Kroger, M. (2006), "Multi-objective crash-worthiness optimization of circular aluminum tubes", Thin Wall. Struct., 44, 301-308. https://doi.org/10.1016/j.tws.2006.03.010

피인용 문헌

  1. Influence of neck width on the performance of ADAS device with diamond-shaped hole plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.019