References
- Alvandi, A. and Cremona, C. (2006), "Assessment of vibration-based damage identification techniques", J. Sound Vib., 292, 179-202. https://doi.org/10.1016/j.jsv.2005.07.036
- Bezdek, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithm, Plenum Press, NY.
- da Silva, S., Dias Junior, M., Lopes Junior, V. and Brennan, M.J. (2008), "Structural damage detection by fuzzy clustering", Mech. Syst. Signal Pr., 22, 1636-1649. https://doi.org/10.1016/j.ymssp.2008.01.004
- Farrar, C.R., Duffey, T.A., Doebling, S.W. and Nix, D.A. (2000), "A statistical pattern recognition paradigm for vibration-based structural health monitoring", Proceedings of 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA.
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Philos. Trans. Royal Soc. A, 365, 303-315. https://doi.org/10.1098/rsta.2006.1928
- Fugate, M.L., Sohn, H. and Farrar, C.R. (2001), "Vibration-based damage detection using statistical process control", Mech. Syst. Signal Pr., 15, 707-721. https://doi.org/10.1006/mssp.2000.1323
- Gul, M. and Catbas, F.N. (2009), "Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications", Mech. Syst. Signal Pr., 23, 2192-2204. https://doi.org/10.1016/j.ymssp.2009.02.013
- Jolliffe, I.T. (2002), Principal Component Analysis, Springer, NY.
- Koiakowski, P. (2007), "Structural health monitoring-a review with the emphasis on low-frequency methods", Eng. Tran., 55, 239-275.
- MATLAB (2000), Toolbox User's Guide, http://www.mathworks.com/products/, The MathWorks, Inc..
- Nguyen, V.H. and Golinval, J.C. (2010), "Fault detection based on Kernel Principal Component Analysis", Eng. Struct., 32, 3683-3691. https://doi.org/10.1016/j.engstruct.2010.08.012
- Oh, C.K. and Sohn, H. (2009), "Damage diagnosis under environmental and operational variations using unsupervised support vector machine", J. Sound Vib., 325, 224-239. https://doi.org/10.1016/j.jsv.2009.03.014
- Rytter, A. (1993), "Vibration based inspection of civil engineering structures", Aalborg University, Denmark.
- Scholkopf, B., Smola, A. and Müller, K.R. (1998), "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput., 10, 1299-1319. https://doi.org/10.1162/089976698300017467
- Sohn, H. (2007), "Effects of environmental and operational variability on structural health monitoring", Philos. Trans. Royal Soc. A, 365, 539-560. https://doi.org/10.1098/rsta.2006.1935
- Sohn, H., Farrar, C.R. and Hemez, F.M. (2003), "A review of structural health monitoring literature: 1996- 2001", LA-13976-MS, Los Alamos National Laboratory Report, New Mexico.
- Trendafilova, I., Cartmell, M.P. and Ostachowicz, W. (2008), "Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition", J. Sound Vib., 313, 560-566. https://doi.org/10.1016/j.jsv.2007.12.008
- Worden, K., Manson, G. and Fieller, N.R.J. (2000), "Damage detection using outlier analysis", J. Sound Vib., 229, 647-667. https://doi.org/10.1006/jsvi.1999.2514
- Worden, K. and Manson, G. (2007), "The application of machine learning to structural health monitoring", Philos. Trans. Royal Soc. A, 365, 515-537. https://doi.org/10.1098/rsta.2006.1938
- Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21, 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yu, L. and Xu, P. (2011), "Structural health monitoring based on continuous ACO method", Microelectron. Reliab., 51, 270-278. https://doi.org/10.1016/j.microrel.2010.09.011
- Yu, L., Zhu, J.H. and Chen, L.J. (2010), "Parametric study on PCA-based algorithm for structural health monitoring", Proceedings of IEEE Prognostics and Health Management Conference, Macau University, Macau, January.
- Zang, C., Friswell, M.I. and Imregun, M. (2003), "Structural health monitoring and damage assessment using measured FRFs from multiple sensors, part I: The indicator of correlation criteria", Proceedings of 5th International Conference on Damage Assessment of Structures, Southampton, England.
- Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principalw component projection", J. Sound Vib., 242, 813-827. https://doi.org/10.1006/jsvi.2000.3390
Cited by
- System parameter identification from projection of inverse analysis vol.396, 2017, https://doi.org/10.1016/j.jsv.2017.02.042
- Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.291
- Nonlinear damage detection using higher statistical moments of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.221
- Online damage detection using recursive principal component analysis and recursive condition indicators vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa7220