DOI QR코드

DOI QR Code

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K. (Mechanical Engineering and MME, Indian School of Mines) ;
  • Maiti, D.K. (Aerospace Engineering, Indian Institute of Technology)
  • Received : 2011.04.11
  • Accepted : 2012.09.24
  • Published : 2012.10.25

Abstract

The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

Keywords

References

  1. Arafa, M. and Baz, A. (2000), "Dynamic of active piezoelectric damping composites", Compos. Part B, 31, 255-264. https://doi.org/10.1016/S1359-8368(00)00020-2
  2. Azzouz, M.S., Mei, C., Bevan, J.S. and Ro, J.J. (2001), "Finite element modeling of MFC/AFC actuators and performance of MFC", J. Intell. Mater. Syst. Struct., 12, 601-612. https://doi.org/10.1177/10453890122145384
  3. Bailey, T. and Hubbard, J.E. Jr. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilever beam", J. Guid Control Dyn., 8(5), 605-611. https://doi.org/10.2514/3.20029
  4. Bathe, K.J. (1995), Finite Element Procedures, 2nd Edition, Prentice Hall.
  5. Baz, A. and Poh, S. (1988), "Performance of an active control system with piezoelectric actuators", J. Sound Vib., 126, 327-343. https://doi.org/10.1016/0022-460X(88)90245-3
  6. Bent, A.A., Hagood, N.W. and Rodgers, J.P. (1995), "Anisotropic actuation with piezoelectric fiber composites", J. Intell. Mater. Syst. Struct., 6, 338-349. https://doi.org/10.1177/1045389X9500600305
  7. Bent, A.A. (1997), "Active fiber composites for structural actuation", PhD Thesis, MIT.
  8. Derrien, K. and Gilormini, P. (2009), "The effect of moisture-induced swelling on the absorption capacity of transversely isotropic elastic polymer-matrix composites", Int. J. Solid Struct., 46, 1547-1553. https://doi.org/10.1016/j.ijsolstr.2008.11.014
  9. Jin, Z.L., Yang, Y.W. and Soh, C.K. (2010), "Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control", Smart Struct. Syst., 6(7), 767-792. https://doi.org/10.12989/sss.2010.6.7.767
  10. Li, Q., Mei, C. and Huang, J.K. (2007), "Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators", AIAA J., 45(8), 1861-1873. https://doi.org/10.2514/1.28280
  11. Lim, Y.H., Varadan, V.V. and Varadan, V.K. (1999), "Closed loop finite-element modeling of active structural damping in the time domain", Smart Mater. Struct., 8, 390-400. https://doi.org/10.1088/0964-1726/8/3/310
  12. Mahato, P.K. and Maiti, D.K. (2010a), "Flutter control of smart composite structure in hygro-thermal environment", J. Aerosp. Eng., 23(4), 317-326. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000046
  13. Mahato, P.K. and Maiti, D.K. (2010b), "Aeroelastic analysis of smart composite structures in hygrothermal environment", Compos. Struct., 92(4), 1027-1038. https://doi.org/10.1016/j.compstruct.2009.09.050
  14. Maiti, D.K. and Sinha, P.K. (2011), "Analysis of smart laminated composites employing piezo embedded super element", Proc. Eng., 14, 3268-2376. https://doi.org/10.1016/j.proeng.2011.07.413
  15. Mirzaee, E., Eghtesad, M. and Fazelzadeh, S.A. (2011), "Trajectory tracking and active vibration suppression of a smart single-link flexible arm using a composite control", Smart Struct. Syst., 7(2), 103-116. https://doi.org/10.12989/sss.2011.7.2.103
  16. Paz, M. (2003), Structural Dynamics : Theory and Computation, 4th Edition, KPuwer Academic Publishers.
  17. Peng, F., Ng, A. and Hu, Y.R. (2005), "Actuator placement optimization and adaptive vibration control of plate smart structure", J. Intell. Mater. Syst. Struct., 16, 263-271. https://doi.org/10.1177/1045389X05050105
  18. Raja, S., Sinha, P.K., Prathap, G. and Dwarakanathan, D. (2004), "Influence of active stiffening on dynamic behaviour of piezo-hygro-thermo-elastic composite plates and shells", J. Sound Vib., 278, 257-283. https://doi.org/10.1016/j.jsv.2003.10.002
  19. Ray, M.C., Bhattacharya, R. and Samanta, B. (1994), "Static analysis of an intelligent structure by the finite element method", Comput. Struct., 52(4), 617-631. https://doi.org/10.1016/0045-7949(94)90344-1
  20. Ray, M.C. (2007), "Smart damping of laminated thin cylindrical panels using piezoelectric fiber reinforced composites", I. J. Solid Struct., 44, 587-602. https://doi.org/10.1016/j.ijsolstr.2006.05.005
  21. Ro, J. and Baz, A. (2002), "Optimum placement and control of active constrained layer damping using modal strain energy approach", J. Vib. Control, 8, 861-876. https://doi.org/10.1177/107754602029204
  22. SaiRam, K.S. and Sinha, P.K. (1991), "Hygrothermal effects on the bending characteristics of laminated composite plates", Comput. Struct., 40(4), 1009-1015. https://doi.org/10.1016/0045-7949(91)90332-G
  23. Shridharan, S. and Kim, S. (2009), "Piezo-electric control of stiffened panels subject to interactive buckling", Int. J. Solid Struct., 46, 1527-1538. https://doi.org/10.1016/j.ijsolstr.2008.11.025
  24. Tan, P., Tong, L. and Sun, D. (2002), "Dynamic characteristics of a beam system with active piezoelectric fiber reinforced composite layers", Compos. Part B, 33, 545-555. https://doi.org/10.1016/S1359-8368(02)00029-X
  25. Tzou, H.S. and Tseng, C.I. (1990), "Distributed piezoelectric sensor/actuator design for dynamic measurement/ control of distributed parameter systems - a piezoelectric finite element approach", J. Sound Vib., 138(1), 17-34. https://doi.org/10.1016/0022-460X(90)90701-Z
  26. Wu, C.H. and Tauchert, T.R. (1980), "Thermoelastic analysis of laminated plates. 2: Antisymmetric cross-ply and angle-ply laminates", J. Therm. Stress., 3, 365-378. https://doi.org/10.1080/01495738008926975
  27. Youssef, Z., Jacquemin, F., Gloaguen, D. and Guillen, R. (2008), "A multi-scale analysis of composite structures- Application to the design of accelerated hygrothermal cycles", Compos. Struct., 82, 302-309. https://doi.org/10.1016/j.compstruct.2007.01.008
  28. Zhang, H.Y. and Shen, Y.P. (2007), "Vibration suppression of laminated plates with 1-3 piezoelectric fiberreinforced composite layers equipped with interdigitated electrodes", Compos. Struct., 79, 220-228. https://doi.org/10.1016/j.compstruct.2005.12.003

Cited by

  1. Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory vol.63, pp.4, 2012, https://doi.org/10.12989/sem.2017.63.4.471