DOI QR코드

DOI QR Code

Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens

  • Aliha, M.R.M. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST)) ;
  • Heidari-Rarani, M. (Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST)) ;
  • Shokrieh, M.M. (Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST)) ;
  • Ayatollahi, M.R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST))
  • Received : 2012.01.05
  • Accepted : 2012.08.09
  • Published : 2012.09.25

Abstract

An experimental method was suggested for obtaining fracture toughness ($K_{Ic}$) and the tensile strength (${\sigma}_t$) of chopped strand glass fiber reinforced polymer concretes (PC). Semi-circular bend (SCB) specimens subjected to three-point bending were used for conducting the experiments on the PC material. While the edge cracked SCB specimen could be used to evaluate fracture toughness, the tensile strength was obtained from the un-cracked SCB specimen. The experiments showed the practical applicability of both cracked and un-cracked SCB specimens for using as suitable techniques for measuring $K_{Ic}$ and ${\sigma}_t$ in polymer concretes. In comparison with the conventional rectangular bend beam specimen, the suggested SCB samples need significantly less material due to its smaller size. Furthermore, the average values of ${\sigma}_t$ and $K_{Ic}$ of tested PC were approximately 3.5 to 4.5 times the corresponding values obtained for conventional concrete showing the improved strength properties of PC relative to the conventional concretes.

Keywords

References

  1. Aliha, M.R.M., Ayatollahi, M.R. and Khademi, S. (2007), "Rock tensile strength test using disc type samples-An investigation on sub-sized specimens", Proceedings of Engineering Structural Integrity: Research, Development and Applications (ESIA 9), Beijing, China.
  2. Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J. and Pavier, M.J. (2010), "Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading", Eng. Fract. Mech., 77, 2200-2212. https://doi.org/10.1016/j.engfracmech.2010.03.009
  3. Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012), "Determination of fracture toughness and indirect tensile strength for a polymer concrete (PC) material using an experimental method", Int. Conf. Exp Solid Mech. and Dynamic (X-Mech-2012), Tehran, Iran.
  4. Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291.
  5. Avci, A., Akdemir, A. and Arikan, H. (2005), "Mixed-mode fracture behavior of glass fiber reinforced polymer concrete", Cement Concrete Res., 35(2), 243-247. https://doi.org/10.1016/j.cemconres.2004.07.003
  6. Ayatollahi, M.R. and Aliha, M.R.M. (2006), "Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading", Comput. Mater. Sci., 38(4), 660-670.
  7. Ayatollahi, M.R. and Aliha, M.R.M. (2007), "Fracture toughness study for a brittle rock subjected to mixed mode I/II loading", Int. J. Rock. Mech. Min. Sci., 44(4), 617-624. https://doi.org/10.1016/j.ijrmms.2006.10.001
  8. Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc- type specimen", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9
  9. Chong, K.P. and Kuruppu, M.D. (1987), "Fracture toughness determination of layered materials", Eng. Fract. Mech., 28(1), 43-54. https://doi.org/10.1016/0013-7944(87)90118-4
  10. Czarnecki, L. (1985), "The status of polymer concrete", Conc. Int. Des. Constr., 7(7), 47-53.
  11. Czarnecki, L., Garbacz, A. and Kurach, J. (2001), "On the characterization of polymer concrete fracture surface", Cement Concrete Compos., 23(4-5), 399-409. https://doi.org/10.1016/S0958-9465(01)00009-9
  12. Ferreira, A.J.M., Tavares, C.M. and Ribeiro, M.C. (2000), "Flexural properties of polyester resin concretes", J. Polym. Eng., 20(6), 459-468.
  13. Golestaneh, M., Amini, G., Najafpour, G.D. and Beygi, M.A. (2010), "Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler", World Appl. Sci. J., 9(2), 216-220.
  14. Gorninski, J.P., Dal Molin, D.C. and Kazmierczak, C.S. (2007), "Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability", Constr. Build. Mater., 21(3), 546-555. https://doi.org/10.1016/j.conbuildmat.2005.09.003
  15. Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006
  16. Kim, M.S., Lee,Y. H., Kim, H., Scanlon, A. and Lee, J. (2011), "Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars", Struc. Eng. Mech., 38(4), 459-477. https://doi.org/10.12989/sem.2011.38.4.459
  17. Krause, R.F. and Fuller, E.R. (1984), Fracture Toughness of Polymer Concrete Materials Using Various Chevron-notched Configurations, ASTM STP 855, 309-323.
  18. Lim, I.L., Johnston, I.W., Choi, S.K. and Boland, J.N. (1994), "Fracture testing of a soft rock with semi-circular specimens under three-point bending, Part 1-mode I", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(3), 185-197. https://doi.org/10.1016/0148-9062(94)90463-4
  19. Mantrala, S.K. and Vipulanandan, C. (1995), "Nondestructive evaluation of polyester polymer concrete", ACI Mater. J., 92(6), 660-668.
  20. Prata, L.B., Libardi, W. and Baldo, J.B. (2003), "The effect of aggregate aspect ratio and temperature on the fracture toughness of a low cement refractory concrete", Mater. Res., 6(4), 545-550. https://doi.org/10.1590/S1516-14392003000400021
  21. Ranjit, K.R. (2001), Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, New York.
  22. Reis, J.M.L. and Ferreira, A.J.M. (2003), "Fracture behavior of glass fiber reinforced polymer concrete", Polym. Test., 22(2), 149-153. https://doi.org/10.1016/S0142-9418(02)00063-6
  23. Reis, J.M.L. and Ferreira, A.J.M. (2004), "A contribution to the study of the fracture energy of polymer concrete and fiber reinforced polymer concrete", Polym. Test., 23(4), 437-440. https://doi.org/10.1016/j.polymertesting.2003.09.008
  24. Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20(9), 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008
  25. Ribeiro, M.C.S., Tavares, C.M.L., Figueiredo, M., Fernandes, A.A. and Ferreira, A.J.M. (2003), "Bending characteristics of resin concrete", Mater. Res., 6(2), 247-254. https://doi.org/10.1590/S1516-14392003000200021
  26. Shokrieh, M.M., Heidari-Rarani, M., Shakouri, M. and Kashizadeh, E. (2011), "Effects of thermal cycles on mechanical properties of an optimized polymer concrete", Constr. Build. Mater., 25(8), 3540-3549. https://doi.org/10.1016/j.conbuildmat.2011.03.047
  27. Shokrieh, M.M., Kefayati, A.R. and Chitsazzadeh, M. (2012), "Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete", Mater. Des. 40, 443-452. https://doi.org/10.1016/j.matdes.2012.03.008
  28. Soraru, G.D. and Tassone, P. (2004), "Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process", Constr. Build. Mater., 18(8), 561-566. https://doi.org/10.1016/j.conbuildmat.2004.04.019
  29. Swaddiwudhipong, S., Lu, H.R. and Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cement Concrete Res. 33(12), 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X

Cited by

  1. On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material vol.92, 2017, https://doi.org/10.1016/j.tafmec.2017.07.022
  2. Numerical analysis of a new mixed mode I/III fracture test specimen vol.134, 2015, https://doi.org/10.1016/j.engfracmech.2014.12.010
  3. A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites – Experimental and theoretical study vol.90, 2016, https://doi.org/10.1016/j.ijsolstr.2016.03.018
  4. Mixed mode tensile - in plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions 2018, https://doi.org/10.1016/j.engfracmech.2018.02.007
  5. Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.723
  6. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes vol.39, pp.7, 2016, https://doi.org/10.1111/ffe.12408
  7. Combined numerical and experimental mechanical characterization of a calcium phosphate ceramic using modified Brazilian disc and SCB specimen vol.670, 2016, https://doi.org/10.1016/j.msea.2016.06.020
  8. Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents vol.40, pp.1, 2017, https://doi.org/10.1111/ffe.12474
  9. Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions 2017, https://doi.org/10.1016/j.engfracmech.2017.11.007
  10. Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology vol.159, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.002
  11. Mixed mode fracture analysis in a polymer mortar using the Brazilian disk test vol.154, 2016, https://doi.org/10.1016/j.engfracmech.2016.01.007
  12. Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings – An experimental study vol.64, 2014, https://doi.org/10.1016/j.conbuildmat.2014.04.031
  13. Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria vol.86, 2016, https://doi.org/10.1016/j.tafmec.2016.07.007
  14. Micromechanics based damage model for predicting compression behavior of polymer concretes vol.117, 2018, https://doi.org/10.1016/j.mechmat.2017.11.004
  15. Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.957
  16. Use of uncertain numbers for appraising tensile strength of concrete vol.46, pp.4, 2013, https://doi.org/10.12989/sem.2013.46.4.447
  17. EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials 2018, https://doi.org/10.1016/j.engfracmech.2017.12.014
  18. Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading vol.41, pp.9, 2018, https://doi.org/10.1111/ffe.12841
  19. Numerical Simulation of the Influence of Width of a Prefabricated Crack on the Dimensionless Stress Intensity Factor of Notched Semi-Circular Bend Specimens vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/3291730
  20. Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen vol.21, pp.13, 2012, https://doi.org/10.1080/10298436.2018.1555332
  21. Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes vol.21, pp.8, 2012, https://doi.org/10.1080/14680629.2019.1608289
  22. Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete vol.44, pp.10, 2012, https://doi.org/10.1111/ffe.13521
  23. Failure behavior of functionally graded roller compacted concrete pavement under mode I and III fracture vol.307, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2021.124942
  24. Spatially random modulus and tensile strength: Contribution to variability of strain, damage, and fracture in concrete vol.30, pp.10, 2021, https://doi.org/10.1177/10567895211013081
  25. The role of mix design and short glass fiber content on mode-I cracking characteristics of polymer concrete vol.317, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.126139
  26. A suitable mixed mode I/II test specimen for fracture toughness study of polyurethane foam with different cell densities vol.117, pp.None, 2012, https://doi.org/10.1016/j.tafmec.2021.103171
  27. Experimental investigation of fracture toughness of nanoclay reinforced polymer concrete composite: Effect of specimen size and crack angle vol.117, pp.None, 2012, https://doi.org/10.1016/j.tafmec.2021.103210
  28. Prediction on Crack Propagation of Concrete due to Time-Dependent Creep under High Sustained Loading vol.34, pp.2, 2012, https://doi.org/10.1061/(asce)mt.1943-5533.0004096