References
- Aliha, M.R.M., Ayatollahi, M.R. and Khademi, S. (2007), "Rock tensile strength test using disc type samples-An investigation on sub-sized specimens", Proceedings of Engineering Structural Integrity: Research, Development and Applications (ESIA 9), Beijing, China.
- Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J. and Pavier, M.J. (2010), "Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading", Eng. Fract. Mech., 77, 2200-2212. https://doi.org/10.1016/j.engfracmech.2010.03.009
- Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012), "Determination of fracture toughness and indirect tensile strength for a polymer concrete (PC) material using an experimental method", Int. Conf. Exp Solid Mech. and Dynamic (X-Mech-2012), Tehran, Iran.
- Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291.
- Avci, A., Akdemir, A. and Arikan, H. (2005), "Mixed-mode fracture behavior of glass fiber reinforced polymer concrete", Cement Concrete Res., 35(2), 243-247. https://doi.org/10.1016/j.cemconres.2004.07.003
- Ayatollahi, M.R. and Aliha, M.R.M. (2006), "Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading", Comput. Mater. Sci., 38(4), 660-670.
- Ayatollahi, M.R. and Aliha, M.R.M. (2007), "Fracture toughness study for a brittle rock subjected to mixed mode I/II loading", Int. J. Rock. Mech. Min. Sci., 44(4), 617-624. https://doi.org/10.1016/j.ijrmms.2006.10.001
- Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc- type specimen", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9
- Chong, K.P. and Kuruppu, M.D. (1987), "Fracture toughness determination of layered materials", Eng. Fract. Mech., 28(1), 43-54. https://doi.org/10.1016/0013-7944(87)90118-4
- Czarnecki, L. (1985), "The status of polymer concrete", Conc. Int. Des. Constr., 7(7), 47-53.
- Czarnecki, L., Garbacz, A. and Kurach, J. (2001), "On the characterization of polymer concrete fracture surface", Cement Concrete Compos., 23(4-5), 399-409. https://doi.org/10.1016/S0958-9465(01)00009-9
- Ferreira, A.J.M., Tavares, C.M. and Ribeiro, M.C. (2000), "Flexural properties of polyester resin concretes", J. Polym. Eng., 20(6), 459-468.
- Golestaneh, M., Amini, G., Najafpour, G.D. and Beygi, M.A. (2010), "Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler", World Appl. Sci. J., 9(2), 216-220.
- Gorninski, J.P., Dal Molin, D.C. and Kazmierczak, C.S. (2007), "Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability", Constr. Build. Mater., 21(3), 546-555. https://doi.org/10.1016/j.conbuildmat.2005.09.003
- Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006
- Kim, M.S., Lee,Y. H., Kim, H., Scanlon, A. and Lee, J. (2011), "Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars", Struc. Eng. Mech., 38(4), 459-477. https://doi.org/10.12989/sem.2011.38.4.459
- Krause, R.F. and Fuller, E.R. (1984), Fracture Toughness of Polymer Concrete Materials Using Various Chevron-notched Configurations, ASTM STP 855, 309-323.
- Lim, I.L., Johnston, I.W., Choi, S.K. and Boland, J.N. (1994), "Fracture testing of a soft rock with semi-circular specimens under three-point bending, Part 1-mode I", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(3), 185-197. https://doi.org/10.1016/0148-9062(94)90463-4
- Mantrala, S.K. and Vipulanandan, C. (1995), "Nondestructive evaluation of polyester polymer concrete", ACI Mater. J., 92(6), 660-668.
- Prata, L.B., Libardi, W. and Baldo, J.B. (2003), "The effect of aggregate aspect ratio and temperature on the fracture toughness of a low cement refractory concrete", Mater. Res., 6(4), 545-550. https://doi.org/10.1590/S1516-14392003000400021
- Ranjit, K.R. (2001), Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, New York.
- Reis, J.M.L. and Ferreira, A.J.M. (2003), "Fracture behavior of glass fiber reinforced polymer concrete", Polym. Test., 22(2), 149-153. https://doi.org/10.1016/S0142-9418(02)00063-6
- Reis, J.M.L. and Ferreira, A.J.M. (2004), "A contribution to the study of the fracture energy of polymer concrete and fiber reinforced polymer concrete", Polym. Test., 23(4), 437-440. https://doi.org/10.1016/j.polymertesting.2003.09.008
- Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20(9), 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008
- Ribeiro, M.C.S., Tavares, C.M.L., Figueiredo, M., Fernandes, A.A. and Ferreira, A.J.M. (2003), "Bending characteristics of resin concrete", Mater. Res., 6(2), 247-254. https://doi.org/10.1590/S1516-14392003000200021
- Shokrieh, M.M., Heidari-Rarani, M., Shakouri, M. and Kashizadeh, E. (2011), "Effects of thermal cycles on mechanical properties of an optimized polymer concrete", Constr. Build. Mater., 25(8), 3540-3549. https://doi.org/10.1016/j.conbuildmat.2011.03.047
- Shokrieh, M.M., Kefayati, A.R. and Chitsazzadeh, M. (2012), "Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete", Mater. Des. 40, 443-452. https://doi.org/10.1016/j.matdes.2012.03.008
- Soraru, G.D. and Tassone, P. (2004), "Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process", Constr. Build. Mater., 18(8), 561-566. https://doi.org/10.1016/j.conbuildmat.2004.04.019
- Swaddiwudhipong, S., Lu, H.R. and Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cement Concrete Res. 33(12), 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X
Cited by
- On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material vol.92, 2017, https://doi.org/10.1016/j.tafmec.2017.07.022
- Numerical analysis of a new mixed mode I/III fracture test specimen vol.134, 2015, https://doi.org/10.1016/j.engfracmech.2014.12.010
- A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites – Experimental and theoretical study vol.90, 2016, https://doi.org/10.1016/j.ijsolstr.2016.03.018
- Mixed mode tensile - in plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions 2018, https://doi.org/10.1016/j.engfracmech.2018.02.007
- Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.723
- Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes vol.39, pp.7, 2016, https://doi.org/10.1111/ffe.12408
- Combined numerical and experimental mechanical characterization of a calcium phosphate ceramic using modified Brazilian disc and SCB specimen vol.670, 2016, https://doi.org/10.1016/j.msea.2016.06.020
- Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents vol.40, pp.1, 2017, https://doi.org/10.1111/ffe.12474
- Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions 2017, https://doi.org/10.1016/j.engfracmech.2017.11.007
- Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology vol.159, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.002
- Mixed mode fracture analysis in a polymer mortar using the Brazilian disk test vol.154, 2016, https://doi.org/10.1016/j.engfracmech.2016.01.007
- Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings – An experimental study vol.64, 2014, https://doi.org/10.1016/j.conbuildmat.2014.04.031
- Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria vol.86, 2016, https://doi.org/10.1016/j.tafmec.2016.07.007
- Micromechanics based damage model for predicting compression behavior of polymer concretes vol.117, 2018, https://doi.org/10.1016/j.mechmat.2017.11.004
- Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.957
- Use of uncertain numbers for appraising tensile strength of concrete vol.46, pp.4, 2013, https://doi.org/10.12989/sem.2013.46.4.447
- EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials 2018, https://doi.org/10.1016/j.engfracmech.2017.12.014
- Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading vol.41, pp.9, 2018, https://doi.org/10.1111/ffe.12841
- Numerical Simulation of the Influence of Width of a Prefabricated Crack on the Dimensionless Stress Intensity Factor of Notched Semi-Circular Bend Specimens vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/3291730
- Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen vol.21, pp.13, 2012, https://doi.org/10.1080/10298436.2018.1555332
- Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes vol.21, pp.8, 2012, https://doi.org/10.1080/14680629.2019.1608289
- Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete vol.44, pp.10, 2012, https://doi.org/10.1111/ffe.13521
- Failure behavior of functionally graded roller compacted concrete pavement under mode I and III fracture vol.307, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2021.124942
- Spatially random modulus and tensile strength: Contribution to variability of strain, damage, and fracture in concrete vol.30, pp.10, 2021, https://doi.org/10.1177/10567895211013081
- The role of mix design and short glass fiber content on mode-I cracking characteristics of polymer concrete vol.317, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.126139
- A suitable mixed mode I/II test specimen for fracture toughness study of polyurethane foam with different cell densities vol.117, pp.None, 2012, https://doi.org/10.1016/j.tafmec.2021.103171
- Experimental investigation of fracture toughness of nanoclay reinforced polymer concrete composite: Effect of specimen size and crack angle vol.117, pp.None, 2012, https://doi.org/10.1016/j.tafmec.2021.103210
- Prediction on Crack Propagation of Concrete due to Time-Dependent Creep under High Sustained Loading vol.34, pp.2, 2012, https://doi.org/10.1061/(asce)mt.1943-5533.0004096