참고문헌
- Carbas, S. and Saka, M.P. (2011), "Optimum topology design of various geometrically nonlinear latticed domes using improved harmony search method", Struct. Multidiscip. O., 1, 1-23.
- Cardoso, J.B. and Arora, J.S. (1988), "Variational method for design sensitivity analysis in nonlinear structural mehanics", AIAA J., 26, 5-22. https://doi.org/10.2514/3.48757
- Choi, K.K. and Santos, J.L.T. (1987), "Design sensitivity analysis of nonlinear structural systems, Part I: theory" Int. J. Numer. Meth. Eng., 24, 2039-2055. https://doi.org/10.1002/nme.1620241103
- Deb, K. and Goel, T. (2001a), "Controlled elitist non-dominated sorting genetic algorithms for better convergence", Lecture Notes in Computer Science, 1993, 67-81.
- Deb, K. (2001b), Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons.
- Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm:NSGA-II", IEEE T. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017
- Fonseca, C.M. and Fleming, F.J. (1993), "Genetic algorithms for multiobjective optimization: formulation, discussion and generalization", Proceedings of the Fifth International Conference on Genetic Algorithms, 416- 423.
- Forde, B.W.R. and Stiemer, S.F. (1987), "Improved arc-length orthogonality methods for nonlinear finite element analysis", Comput. Struct., 27, 625-630. https://doi.org/10.1016/0045-7949(87)90078-2
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
- Horn, J.N., Nafpliotis, A.L. and Goldberg, D.E. (1994), "A niched pareto genetic algorithm for multiobjective optimization", Proceedings of the First IEEE Conference on Evolutionary Computation,IEEE World Congress on Computational Intelligence, 82-87.
- Hrinda, G.A. and Nguyen, D.T. (2008), "Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach", Finite Elem. Analy. Des., 44, 933-950. https://doi.org/10.1016/j.finel.2008.07.004
- http://iridia.ulb.ac.be/-manuel/hypervolume.
- Kamat, M.P., Khot, N.S. and Venkayya, V.B. (1984), "Optimization of shallow trusses against limit point instability", AIAA J., 22, 403-408. https://doi.org/10.2514/3.48461
- Kannan, S., Baskar, S., MacCalley, J.D. and Murugan, P. (2009), "Application of NSGAII algorithm to generation expansion palnning", IEEE T. Power Syst., 24(1), 454-461. https://doi.org/10.1109/TPWRS.2008.2004737
- Kaveh, A. and Talatahari, S. (2010), "Optimal design of schwedler and ribbed domes via hybrid big bang-big crunch algorithm", J. Constr. Steel Res., 66(3), 412-419. https://doi.org/10.1016/j.jcsr.2009.10.013
- Kaveh, A. and Talatahari, S. (2011), "Geometry and topology optimization of geodesic domes using charged system search", Struct. Multidiscip. O., 43(2), 215-229. https://doi.org/10.1007/s00158-010-0566-y
- Khot, N.S. and Kamat, M.P. (1985), "Minimum weight design of truss structures with geometric nonlinear behavior", AIAA J., 23, 139-144. https://doi.org/10.2514/3.8882
- Levy, R. and Perng, H.S. (1988), "Optimization for nonlinear stability", Comput. Struct., 30, 529-535. https://doi.org/10.1016/0045-7949(88)90286-6
- Levy, R. (1994a), "Optimization for buckling with exact geometries", Comput. Struct., 53, 1139-1144. https://doi.org/10.1016/0045-7949(94)90161-9
- Levy, R. (1994b), "Optimal design of trusses for overall stability", Comput. Struct., 53(5), 1133-1138. https://doi.org/10.1016/0045-7949(94)90160-0
- Ohsaki, M. (2001), "Sensitivity analysis and optimization corresponding to a degenerate critical point", Int. J. Solid Struct., 38, 4955-4967. https://doi.org/10.1016/S0020-7683(00)00320-6
- Ohsaki, M. (2005), "Design sensitivity analysis and optimization for nonlinear buckling of finite-dimensional elastic conservative structures", Comput. Meth. Appl. Mech. Eng., 194, 3331-3358. https://doi.org/10.1016/j.cma.2004.12.021
- Ohsaki, H.M. and Ikeda, K. (2006), "Imperfection sensitivity analysis of hill-top branching with many symmetric bifurcation points", Int. J. Solid Struct., 43(16), 4704-4719. https://doi.org/10.1016/j.ijsolstr.2005.06.036
- Saka, M.P. and Kameshki, E.S. (1998), "Optimum design of nonlinear elastic framed domes", Adv. Eng. Software, 29(7-9), 519-528. https://doi.org/10.1016/S0965-9978(98)00018-0
- Saka, M.P. (2007a), "Optimum geometry design of geodesic domes using harmony search algorithm", Adv. Struct. Eng., 10, 595-606. https://doi.org/10.1260/136943307783571445
- Saka, M.P. (2007b), "Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm", Comput. Struct., 85, 1635-1646. https://doi.org/10.1016/j.compstruc.2007.02.023
- Santos, J.L.T. and Choi, K.K. (1988), "Sizing design sensitivity analysis of nonlinear structural systems, Part II", Int. J. Numer. Meth. Eng., 26, 2039-2055.
- Schaffer, J.D. (1984), "Multiple objective optimization with vector evaluated genetic algorithms", Ph.D. Thesis, Vanderbilt University.
- Sedaghati, R. and Tabarrok, B. (2000), "Optimum design of truss structures undergoing large deflections subject to a system stability constraint", Int. J. Numer. Meth. Eng., 48(3), 421-434. https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<421::AID-NME885>3.0.CO;2-X
- Sepehri, A., Daneshmand, F. and Jafarpur, K. (2012), "A modified particle swarm approach for Multiobjective optimization of laminated composite structures", Struct. Eng. Mech., 42(3), 335-352. https://doi.org/10.12989/sem.2012.42.3.335
- Srinivas, N. and Deb, K. (1995), "Multiobjective optimization using nondominated sorting in genetic algorithms", Evol. Comput., 2(3), 221-248.
- Sunar, M. and Kahraman, R. (2001), "A comparative study of multiobjective optimization methods in structural design", Turkish J. Eng. Environ. Sci., 25(2), 69-78.
- Talaslioglu, T. (2011), "Multiobjective design optimization of grillage systems according to LRFD-AISC", Adv. Civil Eng., Hindawi Press.
- Tanaka, M. and Tanino, T. (1992), "Global optimization by the genetic algorithm in a multiobjective decision support system", Proceedings of the 10th International Conference on MultipleCriteria Decision Making, 261-270.
- Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z. and Suganthan, P.N. (2011), Multiobjective Evolutionary Algorithms: A Survey of the State of Art, Swarm and Evolutionary Computation, 1, 32-49. https://doi.org/10.1016/j.swevo.2011.03.001
피인용 문헌
- Probabilistic multi-objective optimization of a corrugated-core sandwich structure vol.10, pp.6, 2016, https://doi.org/10.12989/gae.2016.10.6.709
- Bi-objective optimisation of single-layer steel grid structures of folded-plate curtain walls vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001695
- Topology optimization of nonlinear single layer domes by a new metaheuristic vol.16, pp.6, 2014, https://doi.org/10.12989/scs.2014.16.6.681
- Guided genetic algorithm for dome optimization against instability with discrete variables vol.139, 2017, https://doi.org/10.1016/j.jcsr.2017.09.019
- Optimization of domes against instability vol.28, pp.4, 2012, https://doi.org/10.12989/scs.2018.28.4.427
- Optimization of the braced dome structures by using Jaya algorithm with frequency constraints vol.30, pp.1, 2012, https://doi.org/10.12989/scs.2019.30.1.047
- Optimal dome design considering member-related design constraints vol.13, pp.5, 2012, https://doi.org/10.1007/s11709-019-0543-5