DOI QR코드

DOI QR Code

Variable-node element families for mesh connection and adaptive mesh computation

  • Lim, Jae Hyuk (Satellite Structure Department, Korea Aerospace Research Institute (KARI)) ;
  • Sohn, Dongwoo (Division of Mechanical and Energy Systems Engineering, College of Engineering, Korea Maritime University) ;
  • Im, Seyoung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2012.02.20
  • 심사 : 2012.06.26
  • 발행 : 2012.08.10

초록

Variable-node finite element families, termed (4 + k + l + m + n)-node elements with an arbitrary number of nodes (k, l, m, and n) on each of their edges, are developed based on the generic point interpolation with special bases having slope discontinuities in two-dimensional domains. They retain the linear interpolation between any two neighboring nodes, and passes the standard patch test when subdomain-wise $2{\times}2$ Gauss integration is employed. Their shape functions are automatically generated on the master domain of elements although a certain number of nodes are inserted on their edges. The elements can provide a flexibility to resolve nonmatching mesh problems like mesh connection and adaptive mesh refinement. In the case of adaptive mesh refinement problem, so-called "1-irregular node rule" working as a constraint in performing mesh adaptation is relaxed by adopting the variable-node elements. Through several examples, we show the performance of the variable-node finite elements in terms of accuracy and efficiency.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Aminpour, M.A., Ransom, J.B. and McCleary, S.L. (1995), "A coupled analysis method for structures with independently modeled finite element sub-domains", Int. J. Numer. Meth. Eng., 38, 3695-3718. https://doi.org/10.1002/nme.1620382109
  2. Cho, Y.S., Jun, S., Im, S. and Kim, H.G. (2005), "An improved interface element with variable nodes for nonmatching finite element meshes", Comput. Meth. Appl. Mech. Eng., 194, 3022-3046. https://doi.org/10.1016/j.cma.2004.08.002
  3. Cho, Y.S. and Im, S. (2006a), "MLS-based variable-node elements compatible with quadratic interpolation Part I: formulation and application for non-matching meshes", Int. J. Numer. Meth. Eng., 65, 494-516. https://doi.org/10.1002/nme.1453
  4. Cho, Y.S. and Im, S. (2006b), "MLS-based variable-node elements compatible with quadratic interpolation Part II: application for finite crack element", Int. J. Numer. Meth. Eng., 65, 517-547. https://doi.org/10.1002/nme.1452
  5. Choi, C.K. and Lee, N.H. (1993), "Three dimensional transition solid elements for adaptive mesh gradation", Struct. Eng. Mech., 1, 61-74. https://doi.org/10.12989/sem.1993.1.1.061
  6. Choi, C.K. and Lee, N.H. (1996), "A 3-D adaptive mesh refinement using variable-node solid transition elements", Int. J. Numer. Meth. Eng., 39, 1585-1606. https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1585::AID-NME918>3.0.CO;2-D
  7. Choi, C.K., Lee, E.J. and Yu, W.J. (2004), "Adaptive mesh refinement/recovery strategy for FEA", Struct. Eng. Mech., 17, 379-391. https://doi.org/10.12989/sem.2004.17.3_4.379
  8. Choi, C.K. and Park, Y-M. (1992), "An adaptive h-refinement using transition element for plate bending problems", Int. J. Numer. Meth. Eng., 35, 145-163. https://doi.org/10.1002/nme.1620350110
  9. Christie, I. and Hall, C. (1984), "The maximum principle for bilinear elements", Int. J. Numer. Meth. Eng., 20, 549-553. https://doi.org/10.1002/nme.1620200312
  10. Flemisch, B., Puso, M.A. and Wohlmuth, B.I. (2005), "A new dual mortar method for curved interfaces: 2D elasticity", Int. J. Numer. Meth. Eng., 63, 813-832. https://doi.org/10.1002/nme.1300
  11. Floater, M.S. (2003), "Mean value coordinates", Comput. Aid. Geom. Des., 20, 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5
  12. Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid", Int. J. Numer. Meth. Eng., 12, 35-45. https://doi.org/10.1002/nme.1620120104
  13. Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element function using a least square method", Int. J. Numer. Meth. Eng., 8, 461-480. https://doi.org/10.1002/nme.1620080303
  14. Hughes, T.J.R. (1989), The Finite Element Method: Linear Static and Dynamics Finite Element Analysis, Prentice Hall: Englewood Cliffs, NJ.
  15. Kim, H.G. (2002), "Interface element method (IEM) for a partitioned system with non-matching interfaces", Comput. Meth. Appl. Mech. Eng., 191, 3165-3194. https://doi.org/10.1016/S0045-7825(02)00255-4
  16. Kim, H.G. (2008), "Development of three-dimensional interface elements for coupling of non-matching hexahedral meshes", Comput. Meth. Appl. Mech. Eng., 197, 3870-3882. https://doi.org/10.1016/j.cma.2008.03.023
  17. Kim, J.H., Lim, J.H., Lee, J.H. and Im, S. (2008), "A new computational approach to contact mechanics using variable-node finite elements", Int. J. Numer. Meth. Eng., 73, 1966-1988. https://doi.org/10.1002/nme.2162
  18. Lim, J.H. and Im, S. (2007), "(4 + n)-noded moving least square (MLS)-based finite elements for mesh gradation", Struct. Eng. Mech., 25, 91-106. https://doi.org/10.12989/sem.2007.25.1.091
  19. Lim, J.H., Im, S. and Cho, Y.S. (2007a), "MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement", Comput. Meth. Appl. Mech. Eng., 196, 2216-2228. https://doi.org/10.1016/j.cma.2006.11.014
  20. Lim, J.H., Im, S. and Cho, Y.S. (2007b), "Variable-node elements for nonmatching meshes by means of MLS (moving least-square) scheme", Int. J. Numer. Meth. Eng., 72, 835-857. https://doi.org/10.1002/nme.1988
  21. Lim, J.H., Sohn, D., Lee, J.H. and Im, S. (2010), "Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems", Comput. Struct., 88, 413-425. https://doi.org/10.1016/j.compstruc.2009.12.004
  22. Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39, 859-877. https://doi.org/10.1007/s00466-006-0075-4
  23. Lo, S.H., Wan, K.H. and Sze, K.Y. (2006), "Adaptive refinement analysis using hybrid-stress transition elements", Comput. Struct., 84, 2212-2230. https://doi.org/10.1016/j.compstruc.2006.08.013
  24. Lo, S.H., Wu, D. and Sze, K.Y. (2010), "Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements", Finite Elem. Anal. Des., 46, 2-16. https://doi.org/10.1016/j.finel.2009.06.010
  25. Nguyen-Thoi, T., Liu, G.R. and Nguyen-Xuan, H. (2011), "An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics", Int. J. Numer. Meth. Eng., 27, 1446-1472.
  26. Park, K.C., Felippa, C.A. and Rebel, G. (2002), "A simple algorithm for localized construction of non-matching structural interfaces", Int. J. Numer. Meth. Eng., 53, 2117-2142. https://doi.org/10.1002/nme.374
  27. Puso, M.A. (2004), "A 3D mortar method for solid mechanics", Int. J. Numer. Meth. Eng., 59, 315-336. https://doi.org/10.1002/nme.865
  28. Sohn, D., Cho, Y.S. and Im, S. (2012), "A novel scheme to generate meshes with hexahedral elements and polypyramid elements: The carving technique", Comput. Meth. Appl. Mech. Eng., 201-204, 208-227. https://doi.org/10.1016/j.cma.2011.09.002
  29. Sohn, D., Lim, J.H., Cho, Y.S., Kim, J.H. and Im, S. (2011), "Finite element analysis of quasistatic crack propagation in brittle media with voids or inclusions", J. Comput. Phys., 230, 6866-6899. https://doi.org/10.1016/j.jcp.2011.05.016
  30. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, NY.
  31. Varga, R.S. (1966), "On a discrete maximum principle", SIAM J. Numer. Anal., 3, 355-359. https://doi.org/10.1137/0703029
  32. Wachspress, E.L. (1975), A Rational Finite Element Basis, Academic press, NY.
  33. Wu, D., Sze, K.Y. and Lo, S.H. (2008), "Two- and three-dimensional transition elements for adaptive mesh refinement analysis of elasticity problems", Int. J. Numer. Meth. Eng., 78, 587-630.
  34. Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206

피인용 문헌

  1. An efficient scheme for coupling dissimilar hexahedral meshes with the aid of variable-node transition elements vol.65, 2013, https://doi.org/10.1016/j.advengsoft.2013.06.017
  2. 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks vol.313, 2017, https://doi.org/10.1016/j.cma.2016.10.011
  3. Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement vol.196, 2018, https://doi.org/10.1016/j.compstruc.2017.11.007
  4. Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM vol.102, 2016, https://doi.org/10.1016/j.advengsoft.2016.09.007
  5. A new three-dimensional variable-node finite element and its application for fluid–solid interaction problems vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.026
  6. A coupling technique for non-matching finite element meshes vol.290, 2015, https://doi.org/10.1016/j.cma.2015.02.025
  7. Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces vol.293, 2015, https://doi.org/10.1016/j.cma.2015.04.007
  8. Towards fast hemodynamic simulations in large-scale circulatory networks vol.344, pp.None, 2019, https://doi.org/10.1016/j.cma.2018.10.032
  9. Multiscale finite element based trans-scale calculation method for polycrystalline materials vol.6, pp.3, 2019, https://doi.org/10.1088/2053-1591/aaf459
  10. Simulation of cohesive crack growth by a variable-node XFEM vol.14, pp.1, 2012, https://doi.org/10.1007/s11709-019-0595-6
  11. Detection of multiple complicated flaw clusters by dynamic variable-node XFEM with a three-step detection algorithm vol.82, pp.None, 2012, https://doi.org/10.1016/j.euromechsol.2020.103980
  12. A novel scheme for modelling and analysis of spot-welded shell structures using interface shell elements vol.239, pp.None, 2020, https://doi.org/10.1016/j.compstruc.2020.106340
  13. An adaptive phase-field model based on bilinear elements for tensile-compressive-shear fracture vol.105, pp.None, 2022, https://doi.org/10.1016/j.camwa.2021.11.010