Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Aminpour, M.A., Ransom, J.B. and McCleary, S.L. (1995), "A coupled analysis method for structures with independently modeled finite element sub-domains", Int. J. Numer. Meth. Eng., 38, 3695-3718. https://doi.org/10.1002/nme.1620382109
- Cho, Y.S., Jun, S., Im, S. and Kim, H.G. (2005), "An improved interface element with variable nodes for nonmatching finite element meshes", Comput. Meth. Appl. Mech. Eng., 194, 3022-3046. https://doi.org/10.1016/j.cma.2004.08.002
- Cho, Y.S. and Im, S. (2006a), "MLS-based variable-node elements compatible with quadratic interpolation Part I: formulation and application for non-matching meshes", Int. J. Numer. Meth. Eng., 65, 494-516. https://doi.org/10.1002/nme.1453
- Cho, Y.S. and Im, S. (2006b), "MLS-based variable-node elements compatible with quadratic interpolation Part II: application for finite crack element", Int. J. Numer. Meth. Eng., 65, 517-547. https://doi.org/10.1002/nme.1452
- Choi, C.K. and Lee, N.H. (1993), "Three dimensional transition solid elements for adaptive mesh gradation", Struct. Eng. Mech., 1, 61-74. https://doi.org/10.12989/sem.1993.1.1.061
- Choi, C.K. and Lee, N.H. (1996), "A 3-D adaptive mesh refinement using variable-node solid transition elements", Int. J. Numer. Meth. Eng., 39, 1585-1606. https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1585::AID-NME918>3.0.CO;2-D
- Choi, C.K., Lee, E.J. and Yu, W.J. (2004), "Adaptive mesh refinement/recovery strategy for FEA", Struct. Eng. Mech., 17, 379-391. https://doi.org/10.12989/sem.2004.17.3_4.379
- Choi, C.K. and Park, Y-M. (1992), "An adaptive h-refinement using transition element for plate bending problems", Int. J. Numer. Meth. Eng., 35, 145-163. https://doi.org/10.1002/nme.1620350110
- Christie, I. and Hall, C. (1984), "The maximum principle for bilinear elements", Int. J. Numer. Meth. Eng., 20, 549-553. https://doi.org/10.1002/nme.1620200312
- Flemisch, B., Puso, M.A. and Wohlmuth, B.I. (2005), "A new dual mortar method for curved interfaces: 2D elasticity", Int. J. Numer. Meth. Eng., 63, 813-832. https://doi.org/10.1002/nme.1300
- Floater, M.S. (2003), "Mean value coordinates", Comput. Aid. Geom. Des., 20, 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5
- Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid", Int. J. Numer. Meth. Eng., 12, 35-45. https://doi.org/10.1002/nme.1620120104
- Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element function using a least square method", Int. J. Numer. Meth. Eng., 8, 461-480. https://doi.org/10.1002/nme.1620080303
- Hughes, T.J.R. (1989), The Finite Element Method: Linear Static and Dynamics Finite Element Analysis, Prentice Hall: Englewood Cliffs, NJ.
- Kim, H.G. (2002), "Interface element method (IEM) for a partitioned system with non-matching interfaces", Comput. Meth. Appl. Mech. Eng., 191, 3165-3194. https://doi.org/10.1016/S0045-7825(02)00255-4
- Kim, H.G. (2008), "Development of three-dimensional interface elements for coupling of non-matching hexahedral meshes", Comput. Meth. Appl. Mech. Eng., 197, 3870-3882. https://doi.org/10.1016/j.cma.2008.03.023
- Kim, J.H., Lim, J.H., Lee, J.H. and Im, S. (2008), "A new computational approach to contact mechanics using variable-node finite elements", Int. J. Numer. Meth. Eng., 73, 1966-1988. https://doi.org/10.1002/nme.2162
- Lim, J.H. and Im, S. (2007), "(4 + n)-noded moving least square (MLS)-based finite elements for mesh gradation", Struct. Eng. Mech., 25, 91-106. https://doi.org/10.12989/sem.2007.25.1.091
- Lim, J.H., Im, S. and Cho, Y.S. (2007a), "MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement", Comput. Meth. Appl. Mech. Eng., 196, 2216-2228. https://doi.org/10.1016/j.cma.2006.11.014
- Lim, J.H., Im, S. and Cho, Y.S. (2007b), "Variable-node elements for nonmatching meshes by means of MLS (moving least-square) scheme", Int. J. Numer. Meth. Eng., 72, 835-857. https://doi.org/10.1002/nme.1988
- Lim, J.H., Sohn, D., Lee, J.H. and Im, S. (2010), "Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems", Comput. Struct., 88, 413-425. https://doi.org/10.1016/j.compstruc.2009.12.004
- Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39, 859-877. https://doi.org/10.1007/s00466-006-0075-4
- Lo, S.H., Wan, K.H. and Sze, K.Y. (2006), "Adaptive refinement analysis using hybrid-stress transition elements", Comput. Struct., 84, 2212-2230. https://doi.org/10.1016/j.compstruc.2006.08.013
- Lo, S.H., Wu, D. and Sze, K.Y. (2010), "Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements", Finite Elem. Anal. Des., 46, 2-16. https://doi.org/10.1016/j.finel.2009.06.010
- Nguyen-Thoi, T., Liu, G.R. and Nguyen-Xuan, H. (2011), "An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics", Int. J. Numer. Meth. Eng., 27, 1446-1472.
- Park, K.C., Felippa, C.A. and Rebel, G. (2002), "A simple algorithm for localized construction of non-matching structural interfaces", Int. J. Numer. Meth. Eng., 53, 2117-2142. https://doi.org/10.1002/nme.374
- Puso, M.A. (2004), "A 3D mortar method for solid mechanics", Int. J. Numer. Meth. Eng., 59, 315-336. https://doi.org/10.1002/nme.865
- Sohn, D., Cho, Y.S. and Im, S. (2012), "A novel scheme to generate meshes with hexahedral elements and polypyramid elements: The carving technique", Comput. Meth. Appl. Mech. Eng., 201-204, 208-227. https://doi.org/10.1016/j.cma.2011.09.002
- Sohn, D., Lim, J.H., Cho, Y.S., Kim, J.H. and Im, S. (2011), "Finite element analysis of quasistatic crack propagation in brittle media with voids or inclusions", J. Comput. Phys., 230, 6866-6899. https://doi.org/10.1016/j.jcp.2011.05.016
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, NY.
- Varga, R.S. (1966), "On a discrete maximum principle", SIAM J. Numer. Anal., 3, 355-359. https://doi.org/10.1137/0703029
- Wachspress, E.L. (1975), A Rational Finite Element Basis, Academic press, NY.
- Wu, D., Sze, K.Y. and Lo, S.H. (2008), "Two- and three-dimensional transition elements for adaptive mesh refinement analysis of elasticity problems", Int. J. Numer. Meth. Eng., 78, 587-630.
- Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206
Cited by
- An efficient scheme for coupling dissimilar hexahedral meshes with the aid of variable-node transition elements vol.65, 2013, https://doi.org/10.1016/j.advengsoft.2013.06.017
- 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks vol.313, 2017, https://doi.org/10.1016/j.cma.2016.10.011
- Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement vol.196, 2018, https://doi.org/10.1016/j.compstruc.2017.11.007
- Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM vol.102, 2016, https://doi.org/10.1016/j.advengsoft.2016.09.007
- A new three-dimensional variable-node finite element and its application for fluid–solid interaction problems vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.026
- A coupling technique for non-matching finite element meshes vol.290, 2015, https://doi.org/10.1016/j.cma.2015.02.025
- Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces vol.293, 2015, https://doi.org/10.1016/j.cma.2015.04.007
- Towards fast hemodynamic simulations in large-scale circulatory networks vol.344, pp.None, 2019, https://doi.org/10.1016/j.cma.2018.10.032
- Multiscale finite element based trans-scale calculation method for polycrystalline materials vol.6, pp.3, 2019, https://doi.org/10.1088/2053-1591/aaf459
- Simulation of cohesive crack growth by a variable-node XFEM vol.14, pp.1, 2012, https://doi.org/10.1007/s11709-019-0595-6
- Detection of multiple complicated flaw clusters by dynamic variable-node XFEM with a three-step detection algorithm vol.82, pp.None, 2012, https://doi.org/10.1016/j.euromechsol.2020.103980
- A novel scheme for modelling and analysis of spot-welded shell structures using interface shell elements vol.239, pp.None, 2020, https://doi.org/10.1016/j.compstruc.2020.106340
- An adaptive phase-field model based on bilinear elements for tensile-compressive-shear fracture vol.105, pp.None, 2022, https://doi.org/10.1016/j.camwa.2021.11.010