References
- Bayat, M., Pakar, I. and Bayat, M. (2011), "Analytical study on the vibration frequencies of tapered beams", Latin Am. J. Solids Struct., 8(2), 149-162. https://doi.org/10.1590/S1679-78252011000200003
- Bayat, M., Shahidi, M., Barari, A. and Domairry, G. (2011a), "Analytical evaluation of the nonlinear vibration of coupled oscillator systems", Zeitschrift fur Naturforschung Section A-A J. Phys. Sci., 66(1-2), 67-74.
- Bayat, M., Barari, A. and Shahidi, M. (2011b), "Dynamic response of axially loaded euler-bernoulli beams", Mechanika, 17(2), 172-177.
- Bayat, M. and Pakar, I. (2011c), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Bayat, M., Bayat, M. and Bayat, M. (2011d), "An analytical approach on a mass grounded by linear and nonlinear springs in series", Int. J. Phy. Sci., 6(2), 229-236.
- Bayat, M., Shahidi, M. and Bayat, M. (2011e), "Application of iteration perturbation method for nonlinear oscillators with discontinuities", Int. J. Phy. Sci., 6(15), 3608-3612.
- Bayat, M., Pakar, I. and Shahidi, M. (2011f), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M. and Abdollahzadeh, G.R. (2011g), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solids Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004
- Bayat, M. and Abdollahzadeh, G.R. (2011h), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solids Struct., 8(4), 429-443. https://doi.org/10.1590/S1679-78252011000400004
- Burgreen, D. (1951), "Free vibrations of a pin-ended column with constant distance between pin ends", J. Appl. Mech., ASME, 18, 135-139.
- Dumir, P. and Bhaskar, A. (1988), "Some erroneous finite element formulations of non-linear vibrations of beams and plates", J. Sound Vib., 123(3), 517-527. https://doi.org/10.1016/S0022-460X(88)80167-6
- Fu, Y.M., Zhang, J. and Wan, L.J. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr Appl. Phys., 11, 482-485. https://doi.org/10.1016/j.cap.2010.08.037
- Ganji, D.D., Kachapi, H. and Seyed, H. (2011), "Analytical and numerical methods in engineering and applied sciences", Prog. Nonlin. Sci., 3, 1-579.
- Ganji, D.D., Bararnia, H., Soleimani, S. and Ghasemi, E. (2009), "Analytical solution of magneto-hydrodinamic flow over a nonlinear stretching sheet", Modern Phys. Lett. B, 23, 2541-2556. https://doi.org/10.1142/S0217984909020692
- Ghasemi, E., Bayat, M. and Bayat, M. (2011), "Visco-elastic MHD flow of walters liquid B fluid and heat transfer over a non-isothermal stretching sheet", Int. J. Phy. Sci., 6(21), 5022-5039.
- Goorman, D.J. (1975), "Free vibrations of beams and shafts", Appl. Mech., ASME, 18, 135-139.
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Comm., 29, 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A., 374, 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- He, J.H., Zhong, T. and Tang, L. (2010), "Hamiltonian Approach to duffing-harmonic equation", Int. J. Nonlin. Sci. Numer., 11(S), 43-46.
- Hoseini, S.H., Pirbodaghi, T., Ahmadian, M.T. and Farrahi, G.H. (2009), "On the large amplitude free vibrations of tapered beams: an analytical approach", Mech. Res. Comm., 36, 892-897. https://doi.org/10.1016/j.mechrescom.2009.08.003
- Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Current Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
- Liu, J.F. (2009), "He's variational approach for nonlinear oscillators with high nonlinearity", Comput. Math. Appl., 58(11-12), 2423-2426. https://doi.org/10.1016/j.camwa.2009.03.074
- Lou, C. and Sikarskie, D. (1975), "Nonlinear vibration of beams using a form-function approximation", J. Appl. Mech., 42(1), 209-214. https://doi.org/10.1115/1.3423520
- Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Current Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
- Oztur, B. and Coskun, S.B. (2011), "The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation", Struct. Eng. Mech., 37(4), 415-425. https://doi.org/10.12989/sem.2011.37.4.415
- Pakar, I., Bayat, M. and Bayat, M. (2011a), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phy. Sci., 6(30), 6861-6866.
- Pakar, I. and Bayat, M. (2011b), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
- Pakar, I. and Bayat, M. (2012), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroengineering, 14(1), 216-224.
- Pakar, I., Bayat, M. and Bayat, M. (2012), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroengineering, 14(1), 423-429.
- Prathap, G. and Varadan, T. (1978), "The large amplitude vibration of tapered clamped beams", J. Sound Vib., 58(1), 87-94. https://doi.org/10.1016/S0022-460X(78)80062-5
- Sathyamoorthy, M. (1982), "Nonlinear analysis of beams, Part-I: A survey of recent advances", Shock Vib. Dig, 14, 19-35.
- Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "On the solution of free non-linear vibration of beams", Int. J. Phy. Sci., 6(7), 1628-1634.
- Singh, G., Sharma, A. and Venkateswara Rao, G. (1990), "Large-amplitude free vibrations of beams--A discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L
- Xu, L. and He, J.H. (2010), "Determination of limit cycle by hamiltonian approach for strongly nonlinear oscillators", Int. J. Nonlin. Sci., 11(12), 1097-1101.
Cited by
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Nonlinear vibration of stringer shell: An analytical approach vol.229, pp.1, 2015, https://doi.org/10.1177/0954408913509090
- The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.123
- Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.743
- Nonlinear Vibration Analysis Of Prebuckling And Postbuckling In Laminated Composite Beams vol.61, pp.2, 2015, https://doi.org/10.1515/ace-2015-0020
- Forced nonlinear vibration by means of two approximate analytical solutions vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.853
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Accurate analytical solutions for nonlinear oscillators with discontinuous vol.51, pp.2, 2014, https://doi.org/10.12989/sem.2014.51.2.349
- Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
- Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell vol.14, pp.5, 2013, https://doi.org/10.12989/scs.2013.14.5.511
- Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses vol.12, pp.3, 2013, https://doi.org/10.1007/s11803-013-0182-0
- Nonlinear vibration of an electrostatically actuated microbeam vol.11, pp.3, 2014, https://doi.org/10.1590/S1679-78252014000300009
- An accurate novel method for solving nonlinear mechanical systems vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.519
- Accurate periodic solution for nonlinear vibration of thick circular sector slab vol.16, pp.5, 2014, https://doi.org/10.12989/scs.2014.16.5.521
- Mathematical solution for nonlinear vibration equations using variational approach vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1311
- Effect of granulated rubber on shear strength of fine-grained sand vol.9, pp.5, 2017, https://doi.org/10.1016/j.jrmge.2017.03.008
- Nonlinear vibration of thin circular sector cylinder: An analytical approach vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.133
- Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.439
- Accurate periodic solution for non-linear vibration of dynamical equations vol.7, pp.1, 2014, https://doi.org/10.12989/eas.2014.7.1.001
- Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
- Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
- Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.1033
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Approximate analytical solution of nonlinear systems using homotopy perturbation method vol.230, pp.1, 2016, https://doi.org/10.1177/0954408914533104
- Prediction of Liquefaction Potential of Sandy Soil around a Submarine Pipeline under Earthquake Loading vol.10, pp.2, 2019, https://doi.org/10.1061/(ASCE)PS.1949-1204.0000349
- Modeling of compressive strength of cemented sandy soil pp.1568-5616, 2019, https://doi.org/10.1080/01694243.2018.1548535
- Shear behavior of fiber-reinforced sand composite vol.12, pp.5, 2019, https://doi.org/10.1007/s12517-019-4326-z
- Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2012, https://doi.org/10.12989/sem.2017.61.5.657
- Nonlinear Stochastic Analysis of Footbridge Lateral Vibration Based on Probability Density Evolution Method vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2606395
- Analysis of Dynamic Behavior of Beams with Variable Cross-section vol.40, pp.3, 2019, https://doi.org/10.1134/s1995080219030168
- Investigation of the deformability properties of fiber reinforced cemented sand vol.33, pp.17, 2012, https://doi.org/10.1080/01694243.2019.1619224
- Experimental study of impact of cement treatment on the shear behavior of loess and clay vol.13, pp.4, 2012, https://doi.org/10.1007/s12517-020-5181-7
- Comparison of different local site effect estimation methods in site with high thickness of alluvial layer deposits: a case study of Babol city vol.13, pp.7, 2012, https://doi.org/10.1007/s12517-020-5258-3
- Explicit solutions and numerical simulations for an asymptotic water waves model with surface tension vol.63, pp.1, 2012, https://doi.org/10.1007/s12190-020-01333-8
- Stability analysis of pedestrian-induced large lateral vibration on a footbridge vol.17, pp.3, 2021, https://doi.org/10.1080/15732479.2020.1739720