References
- Assire, A., Michel, B. and Raous, M. (2001), "Creep crack initiation and creep crack growth assessments in welded structures", Nucl. Eng. Des., 206, 45-46. https://doi.org/10.1016/S0029-5493(00)00387-3
- ASME (2004), Boiler and Pressure Vessel Code Section XI, New York, USA.
- Bassani, J.L. and McClintock, F.A. (1981), "Creep relaxation of stress around a crack tip", Int. J. Solid Struct., 17, 479-492. https://doi.org/10.1016/0020-7683(81)90055-X
- Betegon, C. and Hancock, J.W. (1991), "Two parameter characterization of elastic-plastic crack-tip fields", J. Appl. Mech., 58, 104-110. https://doi.org/10.1115/1.2897135
- BS7910 (2005), Guidance on Methods of Assessing the Acceptability of Flaws in Metallic Structure, British Standard Institution, London.
- Bettinson, A.D., O'Dowd, N.P., Nikbin, K.M. and Webster, G.A. (2002), "Experimental investigation of constraint effects on creep crack growth", ASME PVP, 434, 143-150.
- Budden, P.J. and Dean, D.W. (2007), "Constraint effects on creep crack growth", Proceedings of the 8th International Conference Creep and Fatigue at Elevated Temperatures, San Antonio, Texas, July.
- Chao, Y.J., Zhu, X.K. and Zhang, L. (2001), "Higher-order asymptotic crack-tip fields in a power-law creeping material", Int. J. Solids Struct., 38, 3853-3875. https://doi.org/10.1016/S0020-7683(00)00255-9
- Chao, Y.J. and Zhu, X.K. (1998), "J-A2 Characterization of crack-tip fields: Extent of J-A2 dominance and size requirements", Int. J. Fract., 89, 285-307. https://doi.org/10.1023/A:1007487911376
- Chen, Y.Z., Wang, Z.X. and Lin, X.Y. (2009), "Evaluation of the T-stress for interacting cracks", Comput. Mater. Sci., 45(2), 349-357. https://doi.org/10.1016/j.commatsci.2008.10.006
- Ehlers, R. and Riedel, H. (1981), "A finite element analysis of creep deformation in specimen containing a macroscopic crack", Advances in Fracture Research, Proceeding of The Fifth International Conference on Fracture, Cannes, France, June.
- Fookes, A.J. and Smith, D.J. (2003), "The influence of plasticity in creep crack growth in steels", Int. J. Press. Vessel. Pip., 80, 453-463. https://doi.org/10.1016/S0308-0161(03)00100-5
- Hutchinson, J.W. (1968), "Singular behavior at the end of a tension crack in a hardening material", J. Mech. Phys. Solids, 16, 13-31. https://doi.org/10.1016/0022-5096(68)90014-8
- Kamaya, M. (2008), "Growth evaluation of multiple interacting surface cracks. PartI: Experiments and simulation of coalesced crack", Eng. Fract. Mech., 75(6), 1136-1349.
- Kamaya, M. (2008), "Growth evaluation of multiple interacting surface cracks. PartII: Growth evaluation of parallel cracks", Eng. Fract. Mech., 75(6), 1350-1366. https://doi.org/10.1016/j.engfracmech.2007.07.014
- Kim, Y.J., Kim, J.S. and Huh, N.S. (2002), "Engineering C-integral estimates for generalized creep behavior and finite element validation", Int. J. Press. Vessel. Pip., 79, 427-443. https://doi.org/10.1016/S0308-0161(02)00034-0
- Li, F.Z., Needleman, A. and Shih, C.F. (1988), "Characterization of near tip stress and deformation fields in creeping solid", Int. J. Fract., 36, 163-186.
- Liu, X., Xuan, F.Z., Si, J. and Tu, S.D. (2008), "Expert system for remaining life prediction of defected components under fatigue and creep-fatigue loading", Expert Syst. Appl., 34, 222-230. https://doi.org/10.1016/j.eswa.2006.09.027
- O'Dowd, N.P. and Shih, C.F. (1991), "Family of crack-tip fields characterized by a triaxiality parameter-I: structure of fields", J. Mech. Phys. Solids, 39, 989-1015. https://doi.org/10.1016/0022-5096(91)90049-T
- R6 (2006), Assessment of the Integrity of Structures Containing Defects, Revision 4, British Energy Generation Ltd, Gloucester.
- Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solids, 16, 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
- Riedel, H. and Rice, J.R. (1980), "Tensile cracks in creeping solids", Fracture Mechanics: Twelfth Conference, ASTM STP700, American Society for Testing and Materials, 112-130.
- Sharma, S.M., Aravas, N. and Zelman, M.C. (1995), "Two-parameter characterization of crack-tip fields in edgecracked geometries: Plasticity and Creep Solution", Fract. Mech., 25, 309-327.
- Shih, C.F., O'Dowd, N.P. and Kirk, M.T. (1993), "A framework for quantifying crack-tip constraint. Constraint effect in fracture", ASTM STP 1171, American Society for Testing and Materials, Philadelphia.
- Si, J., Xuan, F.Z. and Tu, S.T. (2008), "A numerical creep analysis on the interaction of twin semi-elliptical cracks", Int. J. Press. Vessel. Pip., 85, 459-467. https://doi.org/10.1016/j.ijpvp.2008.02.001
- Sun, P.J., Wang, G.Z., Xuan, F.Z., Tu, S.T. and Wang, Z.D. (2011), "Quantitative characterization of creep constraint induced by crack depths in compact tension specimens", Eng. Fract. Mech., 78, 653-665. https://doi.org/10.1016/j.engfracmech.2010.11.017
- Wang, G.Z., Liu, X.L., Xuan, F.Z. and Tu, S.T. (2010), "Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens", Int. J. Solids Struct., 47, 51-57. https://doi.org/10.1016/j.ijsolstr.2009.09.015
- Wang, G.Z., Li, B.K., Xuan, F.Z. and Tu, S.T. (2012), "Numerical investigation on the creep crack-tip constraint induced by loading configuration of specimens", Eng. Fract. Mech., 79, 353-362. https://doi.org/10.1016/j.engfracmech.2011.11.014
- Xuan, F.Z., Si, J. and Tu, S.T. (2009), "Evaluation of C* integral for interacting cracks in plates under tension", Eng. Fract. Mech., 76, 2192-2201. https://doi.org/10.1016/j.engfracmech.2009.06.012
- Yang, L., Sutton, M.A., Deng, X. and Lyons, J.S. (1996), "Finite element analysis of creep fracture initiation in a model supper-alloy material", Int. J. Fract., 81, 299-320. https://doi.org/10.1007/BF00012425
- Yang, S., Chao, Y.J. and Sutton, M.A. (1993), "Higher order asymptotic fields in a power law hardening material", Eng. Fract. Mech., 45, 1-20. https://doi.org/10.1016/0013-7944(93)90002-A
- 579-1/ASME FFS-1 (2007), Fitness-for-service, Section 9., American Society of Mechanical Engineers.
Cited by
- Crack-tip constraint analysis of SENB specimen under creep condition vol.29, pp.2, 2015, https://doi.org/10.1007/s12206-015-0110-5