DOI QR코드

DOI QR Code

A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates

  • Rezaiee-Pajand, M. (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Shahabian, F. (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Tavakoli, F.H. (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2012.02.16
  • 심사 : 2012.06.01
  • 발행 : 2012.07.25

초록

To analyze the bending and transverse shear effects of laminated composite plates, a thirteen nodes triangular element will be presented. The suggested formulations consider a parabolic variation of the transverse shear strains through the thickness. As a result, there is no need to use shear correction coefficients in computing the shear stresses. The proposed element can model both thin and thick plates without any problems, such as shear locking and spurious modes. Moreover, the effectiveness of $w_{,n}$, as an independent degree of freedom, is concluded by the present study. To perform the accuracy tests, several examples will be solved. Numerical results for the orthotropic materials with different boundary conditions, shapes, number of layers, thickness ratios and fiber orientations will be presented. The suggested element calculates the deflections and stresses more accurate than those available in the literature.

키워드

참고문헌

  1. Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J., 2, 53-62. https://doi.org/10.1016/j.asej.2011.05.003
  2. Belinha, J. and Dinis, L.M.J.S. (2006), "Analysis of plates and laminates using the element free Galerkin method", Comput. Struct., 84, 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013
  3. Belounar, L. and Guenfoud, M. (2005), "A new rectangular finite element based on the strain approach for plate bending", Thin Wall. Struct., 43, 47-63. https://doi.org/10.1016/j.tws.2004.08.003
  4. Bussamra, F.L.S., Neto, E. and Raimundo, D.S. (2012), "Hybrid quasi-Trefftz 3-D finite elements for laminated composite plates", Comput. Struct., 92-93, 185-192. https://doi.org/10.1016/j.compstruc.2011.11.005
  5. Cai, Y.C., Zhu, H.H. and Guo, S.Y. (2008), "The elastoplastic formulation of polygonal element method based on triangular finite meshes", Struct. Eng. Mech., 30(1), 119-129. https://doi.org/10.12989/sem.2008.30.1.119
  6. Carrera, E., Miglioretti, F. and Petrolo, M. (2011), "Accuracy of refined finite elements for laminated plate analysis", Compos. Struct., 93, 1311-1327. https://doi.org/10.1016/j.compstruct.2010.11.007
  7. Carrera, E., Miglioretti, F. and Petrolo, M. (2011), "Guidelines and recommendations on the use of higher order finite elements for bending analysis of plates", Int. J. Comput. Meth. Eng. Sci. Mech., 12, 303-324. https://doi.org/10.1080/15502287.2011.615792
  8. Cen, S., Long, Y. and Yao, Z. (2002), "A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates", Comput. Struct., 80, 819-833. https://doi.org/10.1016/S0045-7949(02)00049-4
  9. Kabir, H.R.H. (1995), "A shear locking free robust isoparametric three-node triangular finite element for moderately thick and thin arbitrarily laminated plates", Comput. Struct., 57, 589-597. https://doi.org/10.1016/0045-7949(95)00071-N
  10. Kant, T., Gupta, A.B., Pendhari, S.S. and Desai, Y.M. (2008), "Elasticity solution for cross-ply composite and sandwich laminates", Compos. Struct., 83, 13-24. https://doi.org/10.1016/j.compstruct.2007.03.003
  11. Lo, S.H., Zhen, W., Cheung, Y.K and Wanji, C. (2007), "An enhanced global-local higher-order theory for the free edge effect in laminates", Compos. Struct., 81, 499-510. https://doi.org/10.1016/j.compstruct.2006.09.013
  12. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear deformation on flexural motions of isotropic elastic plates", ASME. J. Appl. Mech., 18, 31-38.
  13. Padmanav, Dash. and Singh, B.N. (2010), "Geometrically nonlinear bending analysis of laminated composite plate", Commun. Nonlin.. Sci. Numer. Simul., 15, 3170-3181. https://doi.org/10.1016/j.cnsns.2009.11.017
  14. Polit, O. and Touratier, M. (2000), "High-order triangular sandwich plate finite element for linear and non-linear analyses", Comput. Meth. Appl. Mech. Eng., 185, 305-324. https://doi.org/10.1016/S0045-7825(99)00264-9
  15. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", Appl. Mech. ASME., 51, 745-752. https://doi.org/10.1115/1.3167719
  16. Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, Wiley, New York.
  17. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, Boca Raton, CRC Press.
  18. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME. J. Appl. Mech., 12, A69-77.
  19. Ren, J.G. (1987), "Bending of simply supported anti symmetrically laminated rectangular plate under transverse loading", Compos. Sci. Technol., 28, 231-243. https://doi.org/10.1016/0266-3538(87)90004-2
  20. Rezaiee-Pajand, M. and Akhtary, M.R. (1996), "Study of several six-node plate bending triangular elements", Journal of Faculty of Engineering, University of Tabriz, 15, 17-38. (in Persian)
  21. Rezaiee-Pajand, M. and Akhtary, M.R. (1998), "A family of 13-node plate bending triangular elements", Commun. Numer. Meth. Eng., 14, 529-537. https://doi.org/10.1002/(SICI)1099-0887(199806)14:6<529::AID-CNM168>3.0.CO;2-2
  22. Rezaiee-Pajand, M. and Sarafrazi, S.R. (2000), "Including the shear deformation in thin plate bending and beam elements", Amirkabir J. Sci. Technol., 42(11), 130-147. (in Persian)
  23. Rezaiee-Pajand, M. and Mohamadzade, H.R. (2010), "Finite element template for four-sided kirchhoff plate bending", Journal of civil and environmental Engineering, University of Tabriz, 2(40), 25-38. (in Persian)
  24. Rezaiee-Pajand, M. and Karkon, M. (2012), "Two efficient hybrid-Trefftz elements for plate bending analysis", Latin Am. J. Solids Struct., 9(1).
  25. Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stresses in composite finite elements based on first order shear deformation theory", Int. J. Numer. Meth. Eng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
  26. Rolfes, R., Rohwer, K. and Ballerstaedt, M. (1998), "Efficient linear transverse normal stress analysis of layered composite plates", Comput. Struct., 68, 643-652. https://doi.org/10.1016/S0045-7949(98)00097-2
  27. Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Compos. Struct., 55, 329-336. https://doi.org/10.1016/S0263-8223(01)00149-0
  28. Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Analy. D., 39, 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
  29. Tahani, M. and Nosier, A. (2003), "Edge effects of uniformly loaded cross-ply composite laminates", Mater. Des., 24, 647-658. https://doi.org/10.1016/S0261-3069(03)00098-0
  30. Thinh, T.I. and Quoc, T.H. (2010), "Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates", Comput. Mater. Sci., 49, S383-S389. https://doi.org/10.1016/j.commatsci.2010.05.011
  31. Timoshenko, S. and Krieger, S.W. (1995), Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore.
  32. Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49, S390-S394. https://doi.org/10.1016/j.commatsci.2010.03.045
  33. Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712
  34. Whitney, J.M. (1969), "Bending extensional coupling in laminated plates under transverse loading", J. Compos. Mater., 3, 20-35. https://doi.org/10.1177/002199836900300102
  35. hen, W. and Wanji, C. (2010), "A $C^{0}$-type higher-order theory for bending analysis of laminated composite and sandwich plates", Compos. Struct., 92, 653-661. https://doi.org/10.1016/j.compstruct.2009.09.032

피인용 문헌

  1. A New Method Applied to the Quadrilateral Membrane Element with Vertex Rigid Rotational Freedom vol.2016, 2016, https://doi.org/10.1155/2016/1045438
  2. Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.015
  3. Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates vol.57, pp.3, 2016, https://doi.org/10.12989/sem.2016.57.3.473
  4. An experimental study on the flexural performance of laminated glass vol.49, pp.2, 2014, https://doi.org/10.12989/sem.2014.49.2.261
  5. The flexural performance of laminated glass beams under elevated temperature vol.52, pp.3, 2014, https://doi.org/10.12989/sem.2014.52.3.603
  6. Delamination detection in buckling laminated composite plates vol.167, pp.2, 2014, https://doi.org/10.1680/eacm.13.00020
  7. Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.001
  8. Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method vol.45, pp.5, 2013, https://doi.org/10.12989/sem.2013.45.5.677
  9. A new element for the analysis of composite plates vol.82, 2014, https://doi.org/10.1016/j.finel.2013.12.006
  10. Stress Analysis of Free-Edge Laminated Composite Plates by Two Bending Elements vol.13, pp.01, 2016, https://doi.org/10.1142/S0219876216500080
  11. Curvilinear free-edge form effect on stability of perforated laminated composite plates vol.61, pp.2, 2012, https://doi.org/10.12989/sem.2017.61.2.255
  12. Development of a 2D Isoparametric Finite-Element Model Based on Reddy’s Third-Order Theory for the Bending Behavior Analysis of Composite Laminated Plates vol.55, pp.2, 2012, https://doi.org/10.1007/s11029-019-09807-y
  13. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  14. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
  15. Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
  16. An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2012, https://doi.org/10.12989/sem.2020.74.3.365